Ultracold strontium trapped in optical lattice potentials is the basis for the world's best atomic clocks. Meanwhile ultracold atoms in Rydberg states have realized high-fidelity quantum gates. We aim to combine these two approaches to realize many-qubit quantum logic with high fidelity. With single-site spatial resolution, mHz-level spectroscopy, and tunable long-range interactions (achieved with Rydberg dressing), we can use degenerate strontium in optical lattices for quantum logic with minimal error. We are also interested in using Rydberg dressing to generate squeezed states that can beat the standard quantum limit to measurement precision.
More information at our homepage: https://nicholsonlabs.org
Travis Nicholson is a Principal Investigator at the Centre for Quantum Technologies and an Assistant Professor of Physics at NUS. He is an experimental physicist who uses ultracold atoms to study quantum optics, quantum metrology, and quantum many-body physics. He performed his PhD research at JILA in the United States. His PhD thesis demonstrated the world's most accurate atomic clock, which neither gains nor loses a second in 15 billion years. After this he was a postdoctoral fellow at MIT, studying nonlinear quantum optics with Rydberg atoms. Travis joined the CQT in 2017.
Travis Nicholson | |
![]() |
S14-03-08 |
![]() |
phyntl@nus.edu.sg |
![]() |
+65 6601 6192 |