<table>
<thead>
<tr>
<th>Page</th>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Letter from the Director</td>
<td>42</td>
<td>Self-testing</td>
</tr>
<tr>
<td>4</td>
<td>CQT at a glance</td>
<td>50</td>
<td>Made at CQT: quantum satellites</td>
</tr>
<tr>
<td></td>
<td>People</td>
<td></td>
<td>Helping youth make a quantum leap</td>
</tr>
<tr>
<td>7</td>
<td>Governing Board</td>
<td>54</td>
<td>Industry collaboration</td>
</tr>
<tr>
<td>8</td>
<td>Scientific Advisory Board</td>
<td>57</td>
<td>A show for cybersecurity</td>
</tr>
<tr>
<td>11</td>
<td>Principal Investigators</td>
<td>58</td>
<td>Be informed</td>
</tr>
<tr>
<td>14</td>
<td>Staff & students</td>
<td>60</td>
<td>Education</td>
</tr>
<tr>
<td>15</td>
<td>Alumni</td>
<td></td>
<td>What can you do with a PhD?</td>
</tr>
<tr>
<td>18</td>
<td>Perspectives</td>
<td>62</td>
<td>Earn a PhD at CQT</td>
</tr>
<tr>
<td>20</td>
<td>In quantum technologies, tremendous potential</td>
<td>68</td>
<td>Papers</td>
</tr>
<tr>
<td>22</td>
<td>Peer review</td>
<td>70</td>
<td>Events</td>
</tr>
<tr>
<td>26</td>
<td>Rise of the quantum island</td>
<td>74</td>
<td>CQT’s 10th anniversary</td>
</tr>
<tr>
<td>22</td>
<td>News in brief</td>
<td></td>
<td>Outreach</td>
</tr>
<tr>
<td>26</td>
<td>Science updates</td>
<td></td>
<td>Visitors</td>
</tr>
<tr>
<td>32</td>
<td>News</td>
<td>76</td>
<td>Money matters</td>
</tr>
<tr>
<td>36</td>
<td>Projects in focus</td>
<td>79</td>
<td>Supporters</td>
</tr>
<tr>
<td>40</td>
<td>Quantum simulation on a superconducting chip</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Crypto vs quantum computers</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>New kids on the block</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CQT is ten years old and still going strong. Well-wishers who gathered for our tenth anniversary offered both compliments and advice. “Wah, from zero to hero, lah” commented an old friend after visiting our labs. Ten years ago, he saw just empty rooms and dusty floors. “Don’t stop, even at the top”, quipped another high-ranking friend. I was not sure how to interpret this aspirational suggestion, so I just smiled and mumbled. After all, where is the top? The field of quantum technologies has expanded so much that no single institution can embrace the whole range of activities under this label. This said, we do have our niche. In 2017, like in years before, we’ve amassed quality publications and ingenious devices, so ticking all the boxes in our performance reviews. But there is more to our mission than just dry bibliometrics. This annual report offers a glimpse of the fascinating work behind the numbers.

To start with, we’ve built a vibrant research community (pp.20–21). We attract talented folk from all over the world to spend hours trapping ions or gazing at whiteboards covered with equations. Truth be told, we do more than welcome quantum nerds, we nurture them. Our popular Generation Q Camp for pre-university students (pp.50–53) is designed to educate and inspire young minds. Our PhD and internship programmes draw some of the brightest students. And when they leave CQT with their hard-earned degrees, they do all kinds of interesting things, quantum and classical (pp.58–59).

Last year saw the usual buzz of experimental and theoretical activities. We welcomed Huangqian Loh and Travis Nicholson, our two new Principal Investigators (pp.40–41), and Charles Lim, a new CQT Fellow. Alexander Ling’s group has been working hard on their new experimental marvel called SpooQySat (pp.45–49). Dimitris Angelakis’ team paired with researchers at Google to work on quantum simulations (pp.42–44). Our study of the potential impact of quantum technology on Bitcoin made the news (pp.36–39) and our proposal for a quantum-safe standard for cryptography was accepted into a competition launched by the US National Institute of Standards and Technology. And we have not neglected basic research; Goh Koon Tong, a PhD student in Valerio Scarani’s group, gives a nice review of work on quantum self-testing (pp.42–44). This is just a small sample of what we’re working on.

Even though still viewed as basic research, quantum technology is too important to be ignored by industry. Through interactions with research organisations, government and industry, we hope to create new intellectual property and new markets (pp.54–57). We also pay attention to explaining our research to the public at large (pp.74–75).

Thus, so far so good. How about the future? We have to both consolidate and innovate. Mr Quek Gim Pew, who became Chair of CQT’s Governing Board in 2016, shares some of his thoughts on these issues in an interview (pp.15–17). Given his knowledge and experience, he is in a unique position to offer guidance from which we hope to benefit in years to come.

Last but not least, let me thank everyone who contributed to this report. I do hope you will find it both interesting and informative.

LETTER FROM THE DIRECTOR
The Centre for Quantum Technologies (CQT) is a national Research Centre of Excellence (RCE) in Singapore. It brings together physicists, computer scientists and engineers to do basic research on quantum physics and to build devices based on quantum phenomena. Experts in this new discipline of quantum technologies are applying their discoveries in computing, communications and sensing.

The Centre was established in December 2007 with support from Singapore’s National Research Foundation and Ministry of Education. CQT is hosted by the National University of Singapore (NUS) and also has staff at Nanyang Technological University (NTU) and Singapore University of Technology and Design (SUTD).

Discovery

We pursue insight into the physics that describes light, matter and information. We develop novel tools to study and control their interactions. Our research goals range from understanding the properties of materials to working out new encryption schemes.

Technology

We build technologies for secure communication, quantum computing and precision measurement. We create our own software and control systems that push the boundaries of what’s possible. We collaborate and consult with industry.

Education

We train people from undergraduates to postdoctoral fellows. Our quantum technologists are skilled in planning and problem-solving, with diverse skills such as coding, circuit design and systems engineering. Our alumni have moved on to jobs in academia and industry.

In 2017, CQT expanded on the NUS campus from its base in science block S15 into the adjacent block S14 (pictured), connected by a sky bridge. The renovated space accommodates two new experimental groups (see pp.40–41) and researchers contributing to the NUS–Singtel Cyber Security R&D Lab.
The GB listing reflects members as of 31 December 2017. CQT thanks Serguei Beloussov, CEO of Acronis, who completed his term in November. We note there will be changes to the representatives of the National University of Singapore in 2018 as Tan Eng Chye becomes NUS President and Ho Teck Hua becomes Senior Deputy President and Provost.
Principal Investigators

Divesh Aggarwal
Computer Science
Other appointments:
Assistant Professor, Department of Computer Science, National University of Singapore

Dimitris G. Angelakis
Theoretical Physics
Other appointments:
Associate Professor, School of Electronic and Computer Engineering, Technical University of Crete, Greece

Murray Barrett
Experimental Physics
Other appointments:
Associate Professor, Department of Physics, National University of Singapore

Kwek Leong Chuan
Theoretical Physics
Other appointments:
Associate Professor, National Institute of Education and Deputy Director, Institute of Advanced Studies, Nanyang Technological University, Singapore

Kai Dieckmann
Experimental Physics
Other appointments:
Associate Professor, Department of Physics, National University of Singapore

Rainer Dumke
Experimental Physics
Other appointments:
Associate Professor, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore

Berge Englert
Theoretical Physics
Other appointments:
Professor, Department of Physics, National University of Singapore

Joseph Fitzsimons
Computer Science
Other appointments:
Assistant Professor, Engineering Product Development, Science and Math, Singapore University of Technology & Design

Rahul Jain
Computer Science
Other appointments:
Associate Professor, Department of Computer Science, National University of Singapore

Dagomir Kaszlikowski
Theoretical Physics
Other appointments:
Associate Professor, Department of Physics, National University of Singapore

Christian Kurtsiefer
Experimental Physics
Other appointments:
Professor, Department of Physics, National University of Singapore

Loh Huanqian
Experimental Physics
Other appointments:
President’s Assistant Professor, Department of Physics, National University of Singapore

Hartmut Klauck
Computer Science
Other appointments:
Assistant Professor, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore

Troy Lee
Computer Science
Other appointments:
Associate Professor, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore

Wenhui Li
Experimental Physics
Other appointments:
Assistant Professor, Department of Physics, National University of Singapore

Dimitris G. Angelakis
Theoretical Physics
Other appointments:
Associate Professor, School of Electronic and Computer Engineering, Technical University of Crete, Greece

Kwek Leong Chuan
Theoretical Physics
Other appointments:
Associate Professor, National Institute of Education and Deputy Director, Institute of Advanced Studies, Nanyang Technological University, Singapore

Kai Dieckmann
Experimental Physics
Other appointments:
Associate Professor, Department of Physics, National University of Singapore

Rainer Dumke
Experimental Physics
Other appointments:
Associate Professor, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore

Berge Englert
Theoretical Physics
Other appointments:
Professor, Department of Physics, National University of Singapore

Joseph Fitzsimons
Computer Science
Other appointments:
Assistant Professor, Engineering Product Development, Science and Math, Singapore University of Technology & Design

Rahul Jain
Computer Science
Other appointments:
Associate Professor, Department of Computer Science, National University of Singapore

Dagomir Kaszlikowski
Theoretical Physics
Other appointments:
Associate Professor, Department of Physics, National University of Singapore

Christian Kurtsiefer
Experimental Physics
Other appointments:
Professor, Department of Physics, National University of Singapore

Loh Huanqian
Experimental Physics
Other appointments:
President’s Assistant Professor, Department of Physics, National University of Singapore

Hartmut Klauck
Computer Science
Other appointments:
Assistant Professor, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore

Troy Lee
Computer Science
Other appointments:
Associate Professor, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore

Wenhui Li
Experimental Physics
Other appointments:
Assistant Professor, Department of Physics, National University of Singapore

Dimitris G. Angelakis
Theoretical Physics
Other appointments:
Associate Professor, School of Electronic and Computer Engineering, Technical University of Crete, Greece

Kwek Leong Chuan
Theoretical Physics
Other appointments:
Associate Professor, National Institute of Education and Deputy Director, Institute of Advanced Studies, Nanyang Technological University, Singapore

Kai Dieckmann
Experimental Physics
Other appointments:
Associate Professor, Department of Physics, National University of Singapore

Rainer Dumke
Experimental Physics
Other appointments:
Associate Professor, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore

Berge Englert
Theoretical Physics
Other appointments:
Professor, Department of Physics, National University of Singapore

Joseph Fitzsimons
Computer Science
Other appointments:
Assistant Professor, Engineering Product Development, Science and Math, Singapore University of Technology & Design
Principal Investigators

Dzmitry Matsukevich
Experimental Physics
Other appointments: Assistant Professor, Department of Physics, National University of Singapore

Manas Mukherjee
Experimental Physics
Other appointments: Assistant Professor, Department of Physics, National University of Singapore

Travis Nicholson
Experimental Physics
Other appointments: Assistant Professor, Department of Physics, National University of Singapore

Valerio Scarani
Theoretical Physics
Other appointments: Professor, Department of Physics, National University of Singapore

Miklos Santha
Computer Science
Other appointments: Senior Researcher at CNRS in the Institut de Recherche en Informatique Fondamentale at the University Paris Diderot, France

Vlatko Vedral
Theoretical Physics
Other appointments: Professor, Department of Physics, National University of Singapore and Professor, University of Oxford, UK

Benoit Gremaud
Theoretical Physics
Other appointments: Researcher at CNRS and Visiting Associate Professor, Department of Physics, National University of Singapore

Lim Ci Wen Charles
Theoretical Physics
Other appointments: Assistant Professor, Department of Electrical & Computer Engineering, National University of Singapore

Oh Choo Hiap
Theoretical Physics
Other appointments: Emeritus Professor, Department of Physics, National University of Singapore

CQT Fellows

Assistant Professor
Ng Hui Khoon
Research Assistant Professor
Mile Gu

Lee Kuan Yew Postdoctoral Fellows
Matthias Steiner
Tan Ting Rei

Senior Research Fellows
Alessandro Cere
James Grieve
Martin Kiffner
Gleb Maslennikov
Tan Si-Hui
Thibault Thomas Vogt

Research Fellows
Davit Aghamalyan
Kyle Arnold
Filip Aukzatol
Bai Xuelliang
Shristbora Bagchi
Trao Batahas
Robert Bedington
Cal Yi
Rakhiha Chandrasekara
Andy Chia
Dai Jbo
Michile Da’Amm
Swanup Das
Debashis De Munshi
Tommaso Demarie
Kadrid Durak
Tarun Dutta
Andrew Glaner
Alexander Glazde
Christian Wolfgang Ernst Gross
Michal Hajdusiek
Han Rui
Han Yungsang
Ho Shen Yong
Christoph Hufnagel
Md. Tanvirul Islam
Ravi Kumar
Sunit Kumar
Lam Mun Chosing Mark
Le Phuc Thinh
Han-Hsuan Lin
Nata Li
Liu Peiliang
Alexander Lohrmann
Juan Miguel Arzamola Mantilla
Debasis Mondal
Stefan Nimmrichter
Yingkai Ouyang
Sambit Bikas Pal
Chitrabanabha Perumangatt
Poh Hsu Shun
Anupam Prakash
Mohamed Riadh Rebihi
Ansis Rosmanis
Arpax Roy
Junghye Ryu
Shabnam Safaei
Sambott Bikas Pal
Jamie William Jonathon Sikora

Research Associates
Ching Mei Yuen, Brenda
Karthik Ilangovan
Yau Yong Seian

Martin-Isbjörn Trappe
Maria Martinez Valado
Victor Manuel Batsikas Valencia
Antonis Varvitsiotis
Letizia Ventura
Wang Yukun
Nasqueeb Ahmad Warsi
Wei Zhaochu
Wonhwa Yan
Yu Deshui
Yu Wing Chi
Yum Dahyun
Zheng Yicong
Visiting Staff
Luigi Amico
Itai Arad
John Baoz
George Batrouni
Chen Jingling
Tristan Farrow
Rosario Fazio
Dmitry Gavinsky
Peter Hanggi
Masahito Hayashi
David Hutchinson
Gabor Ivanyos
Dieter Jaksch
Antoine Jouy
Pawel Kurzynski
Anita Lamas-Linares
Jose Ignacio Latore
Chiara Marialet
Serge Massar
Christian Miniatura
Robert Taylor
Thomas Vidick
Sai Vinjanampathy
David Wilkowski
Yu Xia

Research Affiliates
Iordanis Kerenidis
Lisa Raphals
Hosteck Wei

Research Support
Chong Too Koei Cliff
Bob Chia Zi Neng
Mohammad Imran
Lian Chong Wang
Dilesj Radakrishnan Nair
Nen Yingpan
Tee Kok Song
Akiemov Volodymr

Administrative Staff
Artur Skart (Director)
Lai Chey Heng (Deputy Director)
Kavitha Singh (Admin Director)
Chan Chui Theng
Giam Lay Enn
Kelly Jesse Ho
Jenny Hogan
Aki Honda
Valerie Ho
Lim Ah Boe
Lim Fang Eng
Jacky
Lim Mei Yo
Valerie
Lim Mui Lian
Amell
Lim Siew Hoe
Lum Chune Yang
Resmi Poovathumkai Raju
Tan Ai Long
Irene
Ewan Tan
Tan Lay Hua
Toh Lee Yen
Yvonne
Yeo Xuan San
Timothy

PhD Students
Anurag Anshu
Filip Aukstzel
Phyo Bawse
Kishor Bharti
Narensh Goud Bodidu
Ulrike Bornheimer
Sofia Botsi
Chai Jing Hau
Rakhitha Chandrashekara
Wilson Chin Yat Sun
Swanup Das
Aswin Alexander Eapen
Jaren Gan
Gan Koon Siang
Sanjib Ghosh
Goh Koon Tong
Kevin A. Gregory
Giu Yanwu
Roland Hablitzel
Han Jingshan
Tobias Florian Haug
Hermann Heimonen
Alexander Hue
Rattakorn Kaeuaum
Joshua Kettlewell
Srijita Kundu
Lam Mun Cheong Mark
Alessandro Landra
Lee Janwei
Lee Yik Loong
Frederic Leroux
Lim Chin Chean
Liu Zheng
Maharshi Ray
Aul Malit
Priyanka Mukhopadhyay
Ewan Munro
Debashis De Munshi
Nguyen Chi Huan
Wei Nie
Don Fong En
Mikolaj Parasiak
Jung Jun Park
Ignatius William
Pirmaatmaja
Erick Purwarito
Jian Qi
Alexandre Roulet
Seah Yi-Lin, Max
Stella Seah
See Tian Feng
Mathias Alexander Seidler
Shen Lijiong
Shi Yicheng
Angelina Shu Sze Yi
Sim Jun Yan
Suen Whei Yeap
Aarthi Sundaram
Tang Zhongkan
Kamiyuki
Tang Zong Sheng
Jirawat Tangpanantan
Thi Ha Kyaw
Francesca Trasto
Adrian Nugraha Utama
Noah Van Home
Marek Wajs
Yang Anbang
Yang Syl
Ye Luyao
Yu Xianquan
Aitor Villar Zafra
Zhang Zhipang
Zhao Liming
Zhao Zhihuan

This listing includes all staff and students who worked at CQT during 2017, including those who left during the year. Names may appear twice when someone moved roles. It includes staff employed by the National University of Singapore (NUS), Nanyang Technological University (NTU) and Singapore University of Technology and Design (SUTD), who are part of CQT research groups. The PhD students listing includes students at CQT under the CQT PhD programme, other NUS graduate programmes, and from NTU and SUTD.
In quantum technologies, tremendous potential

Mr Quek Gim Pew, Chief Defence Scientist at the Singapore Ministry of Defence, became Chair of CQT’s Governing Board in November 2016. He shares his views one year into the job.

What do you do as CQT’s Chair?

I lead a team to develop deep learning and machine learning models to understand text documents, classify images, and identify fraudulent transactions,” says Paul. He wanted to move into industry to have scope to climb a career ladder, and found the job with Jewel Paymentech through an advert on LinkedIn. “An experimental physicist must have a good understanding of data, statistics, data analysis, and computer programming, amongst other skills, which are the same skills that are required for a data science role. The grounding of a physics education gives you the ability to read and understand the current literature in AI, and then apply those techniques,” says Paul. “Moving from experimental physics into data science and AI was easy due to the skills I acquired as a researcher.”

Read about some of the Centre’s alumni who have continued in research on pp.20–21 and find examples of graduates’ career paths on pp.58–59.

An alumnus’ story

Paul Condylis was a Research Fellow in experimental groups in CQT for over six years. He joined a Singapore-based technology company called Jewel Paymentech in October 2017 as Lead Research Scientist. The company works on digital payments, delivering anti-fraud and compliance solutions. “I lead a team to develop deep learning and machine learning models to understand text documents, classify images, and identify fraudulent transactions,” says Paul. He wanted to move into industry to have scope to climb a career ladder, and found the job with Jewel Paymentech through an advert on LinkedIn. “An experimental physicist must have a good understanding of data, statistics, data analysis, and computer programming, amongst other skills, which are the same skills that are required for a data science role. The grounding of a physics education gives you the ability to read and understand the current literature in AI, and then apply those techniques,” says Paul. “Moving from experimental physics into data science and AI was easy due to the skills I acquired as a researcher.”

Read about some of the Centre’s alumni who have continued in research on pp.20–21 and find examples of graduates’ career paths on pp.58–59.
We have been working with the National US to move forward. This is the reason we think it can help our engineering folk. If we can bring in resources from outside, I think it can help us move forward as a country. CQT should find a way to harness the collective expertise in the science, there are so many claims out there in the world, whether it’s in other universities or in A*STAR. I think we should firmly anchor ourselves in the science.

There are a few more things we should do. On the international level, if you look over the past year, I think you see a phenomenal growth in interest across the world, in the US, in Europe, and in China. So for us, I think a challenge is to continue to attract and maintain the talents that we have, and compete with all these places where they offer wonderful opportunities.

At the national level, today we are seeing pockets of quantum expertise and interest growing in other places, whether it’s in other universities or in A*STAR. I think we should find a way to harness the collective resources that we have, to synergise what we have, to move forward as a nation. CQT should develop?

What are the directions you think the Centre should develop?

My sense is that, as Singapore is a small country, Singapore is a very small part of the world. We have to have a good balance. We must be very thankful to them for their vision, for the leap of faith. We must be very thankful to them for the very strong endorsement of the need for Singapore to invest in basic sciences.

In turn, I think the fact that we have been able to make so much progress over the past 15 years is a very powerful endorsement that the decision taken then was the right decision. CQT has shown how you can tap very esoteric science and bring it all the way to applications, without losing focus on the science.

About the author
Quak Gim Pew was appointed Chief Defence Scientist of the Singapore Ministry of Defence in 2016. Before this, he was the Chief Executive Officer of DSTA. He also sits on various boards of organisations, institutions and directorship of companies.

For those individuals in CQT who have the entrepreneur bug, who would like to spin off, I would like to see how we can encourage and work within the university’s constraints and support structures to let them succeed.

How do you see engineering will play a role?

If you look at the current problem of building a quantum computer, the engineering challenge vs the theoretical physics problem is probably much, much higher, but the engineering challenges are not necessarily going to be solved by engineers that are trained in the conventional discipline.

I visited Christopher Monroe, who co-founded the quantum computing startup IonQ, in the US. The biggest takeaway I had from the visit was that while one can say the quantum computer is largely an engineering challenge, when you look at the groups in IonQ, you find that what they need are experimental physicists.

The other co-founder of IonQ, Jungsang Kim, shared his insight that if you look at the history of the transistor, the early days, again it was led largely by experimental physicists. You cannot expect engineers who are trained in vacuum tubes to come in and help to develop a transistor. That comes later, after a whole generation of engineers are trained in solid state physics.

So while we are bringing engineering into the programme, we’ve got to bear in mind that the expertise required is quite unique and specific.

If we want to grow quantum engineering, we have to have a good balance. We should make sure that we bring in very strong experimental physicists. Over the course of the programme, we will hopefully train up and build up a whole generation of engineering expertise, and from there we can grow.

How did your trip to IonQ come about?

I was in Washington so I asked Artur, since I’m there, is there anybody that I could visit. It was exciting to talk to leaders in this field, see their contraptions, and to hear about their progress and share how things would evolve. We hope that we can explore ways for IonQ to partner the universities and companies here.

You mentioned last year that you would be asking Artur for a reading list...

He has given me a number of books to read. I keep up with reading popular science and reports too. I will ask Artur for his comments, and he will send me some of the papers behind the news. There are so many claims out there in the world about what is being done. I always find it important to make a check back with CQT to make sense of what is real, what is myth and what is fiction. I also put a point that whenever I go overseas, I check with Artur if there is anyone nearby to chat with.

Do you do this for all the technology areas you monitor?

Not as much. Quantum technologies are a lot more difficult to appreciate and understand. One reason I agreed to take on the job in CQT was because of the potential growth of the exciting technology here. It is mind-boggling, but the potential is tremendous.

From this year, is there any quantum news that stood out to you?

Well, yes! – this issue about whether quantum computing will allow us to securely use the cloud (see p.31). In time to come, I think this would open up new opportunities. The big news over the past year has been quantum computers. The prospect of a quantum computer in whatever form is going to challenge a lot of what we are doing and what we are thinking today and change what is possible and what is not possible. I am thinking about how we position ourselves in these exciting developments.

How do you see basic and applied research co-existing?

We are seeing a maturing of the quantum computer in whatever form is going to challenge a lot of what we are doing and what we are thinking today and change what is possible and what is not possible. I am thinking about how we position ourselves in these exciting developments.

How do you see engineering will play a role?

If you look at the current problem of building a quantum computer, the engineering challenge vs the theoretical physics problem is probably much, much higher, but the engineering challenges are not necessarily going to be solved by engineers that are trained in the conventional discipline.

I visited Christopher Monroe, who co-founded the quantum computing startup IonQ, in the US. The biggest takeaway I had from the visit was that while one can say the quantum computer is largely an engineering challenge, when you look at the groups in IonQ, you find that what they need are experimental physicists.

The other co-founder of IonQ, Jungsang Kim, shared his insight that if you look at the history of the transistor, the early days, again it was led largely by experimental physicists. You cannot expect engineers who are trained in vacuum tubes to come in and help to develop a transistor. That comes later, after a whole generation of engineers are trained in solid state physics.

So while we are bringing engineering into the programme, we’ve got to bear in mind that the expertise required is quite unique and specific.

If we want to grow quantum engineering, we have to have a good balance. We should make sure that we bring in very strong experimental physicists. Over the course of the programme, we will hopefully train up and build up a whole generation of engineering expertise, and from there we can grow.

How did your trip to IonQ come about?

I was in Washington so I asked Artur, since I’m there, is there anybody that I could visit. It was exciting to talk to leaders in this field, see their contraptions, and to hear about their progress and share how things would evolve. We hope that we can explore ways for IonQ to partner the universities and companies here.

You mentioned last year that you would be asking Artur for a reading list...

He has given me a number of books to read. I keep up with reading popular science and reports too. I will ask Artur for his comments, and he will send me some of the papers behind the news. There are so many claims out there in the world about what is being done. I always find it important to make a check back with CQT to make sense of what is real, what is myth and what is fiction. I also put a point that whenever I go overseas, I check with Artur if there is anyone nearby to chat with.

Do you do this for all the technology areas you monitor?

Not as much. Quantum technologies are a lot more difficult to appreciate and understand. One reason I agreed to take on the job in CQT was because of the potential growth of the exciting technology here. It is mind-boggling, but the potential is tremendous.

From this year, is there any quantum news that stood out to you?

Well, yes! – this issue about whether quantum computing will allow us to securely use the cloud (see p.31). In time to come, I think this would open up new opportunities. The big news over the past year has been quantum computers. The prospect of a quantum computer in whatever form is going to challenge a lot of what we are doing and what we are thinking today and change what is possible and what is not possible. I am thinking about how we position ourselves in these exciting developments.

How do you see basic and applied research co-existing?

We are seeing a maturing of the quantum computer in whatever form is going to challenge a lot of what we are doing and what we are thinking today and change what is possible and what is not possible. I am thinking about how we position ourselves in these exciting developments.

How do you see engineering will play a role?

If you look at the current problem of building a quantum computer, the engineering challenge vs the theoretical physics problem is probably much, much higher, but the engineering challenges are not necessarily going to be solved by engineers that are trained in the conventional discipline.

I visited Christopher Monroe, who co-founded the quantum computing startup IonQ, in the US. The biggest takeaway I had from the visit was that while one can say the quantum computer is largely an engineering challenge, when you look at the groups in IonQ, you find that what they need are experimental physicists.

The other co-founder of IonQ, Jungsang Kim, shared his insight that if you look at the history of the transistor, the early days, again it was led largely by experimental physicists. You cannot expect engineers who are trained in vacuum tubes to come in and help to develop a transistor. That comes later, after a whole generation of engineers are trained in solid state physics.

So while we are bringing engineering into the programme, we’ve got to bear in mind that the expertise required is quite unique and specific.

If we want to grow quantum engineering, we have to have a good balance. We should make sure that we bring in very strong experimental physicists. Over the course of the programme, we will hopefully train up and build up a whole generation of engineering expertise, and from there we can grow.

How did your trip to IonQ come about?

I was in Washington so I asked Artur, since I’m there, is there anybody that I could visit. It was exciting to talk to leaders in this field, see their contraptions, and to hear about their progress and share how things would evolve. We hope that we can explore ways for IonQ to partner the universities and companies here.

You mentioned last year that you would be asking Artur for a reading list...

He has given me a number of books to read. I keep up with reading popular science and reports too. I will ask Artur for his comments, and he will send me some of the papers behind the news. There are so many claims out there in the world about what is being done. I always find it important to make a check back with CQT to make sense of what is real, what is myth and what is fiction. I also put a point that whenever I go overseas, I check with Artur if there is anyone nearby to chat with.

Do you do this for all the technology areas you monitor?

Not as much. Quantum technologies are a lot more difficult to appreciate and understand. One reason I agreed to take on the job in CQT was because of the potential growth of the exciting technology here. It is mind-boggling, but the potential is tremendous.

From this year, is there any quantum news that stood out to you?

Well, yes! – this issue about whether quantum computing will allow us to securely use the cloud (see p.31). In time to come, I think this would open up new opportunities. The big news over the past year has been quantum computers. The prospect of a quantum computer in whatever form is going to challenge a lot of what we are doing and what we are thinking today and change what is possible and what is not possible. I am thinking about how we position ourselves in these exciting developments.

How do you see basic and applied research co-existing?

We are seeing a maturing of the quantum computer in whatever form is going to challenge a lot of what we are doing and what we are thinking today and change what is possible and what is not possible. I am thinking about how we position ourselves in these exciting developments.
Peer review

Every year, the Centre is reviewed by its Scientific Advisory Board, comprising experts in quantum technologies from around the world.

In 2017, the SAB timed their visit for December, to coincide with CQT’s tenth anniversary celebrations. The members of the SAB (see p.7) spent a week at CQT, meeting with Principal Investigators (PIs), research staff, students, visitors, senior staff, the Director and the Centre’s Governing Board.

They conduct this peer review to offer feedback on the Centre’s operations and science, submitting a report that summarises their findings (see box The SAB says) and makes recommendations. The recommendations fall in two parts: first a review of how the Centre responded to the SAB’s recommendations of the previous year, then new sets of recommendations. Here we share some of the outcomes.

How we improved

A previous recommendation of the Board was that CQT should offer more advanced courses for graduates. The SAB noted that “Substantial steps were taken to address our recommendation”. Courses included two lecture series coordinated by PIs but co-taught by Research Fellows – one on quantum information and cryptography, and another on convex optimisation and quantum information.

Among the new recommendations was that this initiative be expanded. “We suggest that the postdocs are given the opportunity to teach courses if they want to do so. Experience in teaching may be very valuable in their academic job search,” the SAB wrote in its report.

Other past recommendations that concerned keeping an eye on the quality and number of student applications, maintaining a substantial visitor programme, and exposing students and postdocs to career opportunities in industry were also considered resolved.

What’s still to do

Other areas still need our attention. The SAB had recommended in 2016 that CQT should consider new hires to bridge quantum computer science with many body physics or post-quantum cryptography, and to recruit scientists in the area of experimental solid state computing. These recommendations are reiterated in the 2017 recommendations.

CQT’s experimental activities are strongest in atomic, molecular and optical (AMO) physics. The SAB observes in its report that “a research group working on solid state qubits and devices would also be in a position to interact with the AMO groups. Given the existing spectrum of expertise and interest, CQT has the potential to become a world leader in investigation of hybrid quantum systems”.

Among the new recommendations, the SAB also suggested initiating an annual retreat for the Centre’s PIs to encourage collaboration and strengthen discussions on long-term strategy. The members write “experience both at CQT and elsewhere shows that it is difficult to make up time for casual science discussions which typically incubate future collaborations”. A retreat could be an opportunity that helps “PIs maintain close working relationships and brainstorm for new ideas together in order to develop long term visions for the center.”

To bring the SAB up to speed on CQT’s scientific achievements, each group presents a few posters on its latest results. Peer review

Among the new recommendations was that this initiative be expanded. “We suggest that the postdocs are given the opportunity to teach courses if they want to do so. Experience in teaching may be very valuable in their academic job search,” the SAB wrote in its report.

Other past recommendations that concerned keeping an eye on the quality and number of student applications, maintaining a substantial visitor programme, and exposing students and postdocs to career opportunities in industry were also considered resolved.

What’s still to do

Other areas still need our attention. The SAB had recommended in 2016 that CQT should consider new hires to bridge quantum computer science with many body physics or post-quantum cryptography, and to recruit scientists in the area of experimental solid state computing. These recommendations are reiterated in the 2017 recommendations.

CQT’s experimental activities are strongest in atomic, molecular and optical (AMO) physics. The SAB observes in its report that “a research group working on solid state qubits and devices would also be in a position to interact with the AMO groups. Given the existing spectrum of expertise and interest, CQT has the potential to become a world leader in investigation of hybrid quantum systems”.

Among the new recommendations, the SAB also suggested initiating an annual retreat for the Centre’s PIs to encourage collaboration and strengthen discussions on long-term strategy. The members write “experience both at CQT and elsewhere shows that it is difficult to make up time for casual science discussions which typically incubate future collaborations”. A retreat could be an opportunity that helps “PIs maintain close working relationships and brainstorm for new ideas together in order to develop long term visions for the center.”

To bring the SAB up to speed on CQT’s scientific achievements, each group presents a few posters on its latest results. Peer review

Among the new recommendations was that this initiative be expanded. “We suggest that the postdocs are given the opportunity to teach courses if they want to do so. Experience in teaching may be very valuable in their academic job search,” the SAB wrote in its report.

Other past recommendations that concerned keeping an eye on the quality and number of student applications, maintaining a substantial visitor programme, and exposing students and postdocs to career opportunities in industry were also considered resolved.

What’s still to do

Other areas still need our attention. The SAB had recommended in 2016 that CQT should consider new hires to bridge quantum computer science with many body physics or post-quantum cryptography, and to recruit scientists in the area of experimental solid state computing. These recommendations are reiterated in the 2017 recommendations.

CQT’s experimental activities are strongest in atomic, molecular and optical (AMO) physics. The SAB observes in its report that “a research group working on solid state qubits and devices would also be in a position to interact with the AMO groups. Given the existing spectrum of expertise and interest, CQT has the potential to become a world leader in investigation of hybrid quantum systems”.

Among the new recommendations, the SAB also suggested initiating an annual retreat for the Centre’s PIs to encourage collaboration and strengthen discussions on long-term strategy. The members write “experience both at CQT and elsewhere shows that it is difficult to make up time for casual science discussions which typically incubate future collaborations”. A retreat could be an opportunity that helps “PIs maintain close working relationships and brainstorm for new ideas together in order to develop long term visions for the center.”

To bring the SAB up to speed on CQT’s scientific achievements, each group presents a few posters on its latest results.
Rise of the quantum island

Back in 2004, even before CQT was founded, the popular science magazine New Scientist ran a short piece on the quantum research happening in Singapore. They referred to it being the “rise of the quantum island”. More than ever before, the country is living up to this promise.

CQT is a focal point of quantum research in Singapore, but it’s not the only place it’s happening. The quantum wave has spread, with research groups in other parts of the National University of Singapore, and at Singapore’s other universities and research organisations, working on the topic.

In the wider world, the community is growing too. China in 2017 announced that it would build a £1 billion quantum research centre, Europe has committed €1 billion to a quantum flagship initiative launching in 2018, and the UK has a £270 million programme underway. There is also investment in industry – big tech companies are racing to develop quantum and quantum-inspired computing start-ups. In March 2017, The Economist put quantum technologies on its cover.

It’s a bright moment for quantum R&D. The local impact is that CQT researchers are already involved in joint projects with scientists across Singapore. These collaborations have included projects between the groups of CQT’s Berge Englert and Leonid Krivitsky at the Data Science Institute (DSI) of the Agency for Science Technology and Research (A*STAR).

Berge’s group worked with Leonid’s on methods to measure quantum states. A PhD graduate from Berge’s team who’d worked on the project joined A*STAR after graduating. Also at DSI is another CQT PhD graduate, Victor Leong, hired as a Scientist.

“I was looking for a place where I could effectively apply the skills and knowledge gained throughout my PhD training. Interest in quantum technologies is rapidly growing at A*STAR and research efforts in these areas are being ramped up, so there are numerous opportunities to get things going,” says Victor.

Indeed, in 2017, Leonid started a new collaboration with CQT’s Murray Barrett as co-PI, funded by an A*STAR grant, to develop optical devices for coherent wavelength conversion of single photons emitted by trapped ions.

A benefit to such projects is being in close proximity. “It is easy to pop by to borrow lab stuff, or to simply meet people to discuss our current experiments and trade useful ideas,” says Victor.

Back in NUS, Alexander Ling’s group has collaborations with researchers in the NUS Centre for Advanced 2D Materials (CA2DM) and in the NUS Faculty of Engineering (FIE). The work with CA2DM has involved fabrication of novel, tunable waveguides (see p.26). In 2016, his group was inspired by a proposal from the group of Marko Tsang in FoE for a super-resolution imaging technique, performing one of the first experiments in the world to demonstrate the new technique.

Further collaborations with colleagues in NUS FoE are getting underway. In 2017, the faculty recruited Charles Lim, an expert in the theory of quantum cryptography (read about one of his research results on p.29), as an Assistant Professor in the Department of Electrical & Computer Engineering. Charles got into the quantum field during his time as a physics undergraduate in NUS, when he did his final year project with CQT’s Valerio Scarani in 2009. He now holds a co-appointment as a CQT Fellow.

Quantum networks

In 2016, CQT became a founding member of the NUS-Singtel Cyber Security R&D Lab, a corporate laboratory supported by the National Research Foundation (NRF). CQT is contributing expertise on quantum-safe communication. It’s a sign of the maturing of the local market for quantum technologies, and discussions to establish further partnerships are underway. Meanwhile, the Centre’s researchers are being placed to participate in it and even lead the Asian efforts,” says Hui Khoon.

“A CQT diaspora

Other former members of CQT are helping to seed quantum communities, too. Former CQT Research Fellows Dario Poletti and Tomasz Paterek are both now Assistant Professors in Singapore universities. Dario is at the Singapore University of Technology and Design, and Tomasz at the Nanyang Technological University (NTU). Also at NTU is Mile Gu, who joined the university’s School of Physical and Mathematical Sciences and the Complexity Institute after winning an NRF Fellowship in 2016. Mile retains an affiliation with CQT as a Research Assistant Professor in the CQT group of Vlatko Vedral.

Tomasz continues to collaborate with his CQT colleagues, resulting in co-authored papers on topics including quantum biology, the foundations of quantum mechanics and the statistics of quantum walks. Although originally from Poland, Tomasz wanted to stay in Singapore. “Once you’re here it’s hard to move out and leave the convenient organisation of many things,” he says.

Singaporean Ng Hui Khoon, who has been affiliated with CQT since 2009, took a position at Yale-NUS College in 2013 as an Assistant Professor. She has a 25% appointment with CQT in the group of Berge Englert. “The joint affiliation has been very useful in providing a rich research environment for my own research group,” says Hui Khoon.

And the benefits go both ways. Hui Khoon brings expertise in quantum error correction and fault tolerance, which are essential to proposals for universal quantum computers. “These are exciting times for quantum computing. We, meaning CQT and related institutes in Singapore, are well-placed to participate in it and even lead the Asian efforts,” says Hui Khoon.

A thriving research community, with diverse expertise and wide networks of collaboration, is what will make Singapore not only a quantum island, but also a competitor in the quantum world.
Quantum Shorts on screen

“It was funny and fab”. “Mind boggling and sets you thinking.” “It was really unique to learn through the films.” These are comments from visitors to the Quantum Shorts event organised by CQT with Singapore’s ArtScience Museum in February. It was a screening over four days of ten short films inspired by quantum physics. The ten films were finalists in CQT’s Quantum Shorts film festival, run with media partners Nature and Scientific American, and international scientific partners and screening partners. The ultimate winner was a film called Novae (by Thomas Vanz, pictured). Quantum Shorts is an annual competition for creative works with quantum themes – it returned in September 2017 with a call for flash fiction.

Boost for early-career CQT scientist

CQT Senior Research Fellow James Grieve was selected to take part in two prestigious conferences in 2017. In January, he was a participant in the Global Young Scientists Summit 2017 organised by Singapore’s National Research Foundation for the “world’s outstanding PhDs and post-doctoral fellows under the age of 35”. He also won a place at the Commonwealth Science Conference 2017, an event organised by the UK’s Royal Society and NRF, in June. James has been working at CQT on quantum optics in the group of Alexander Ling since 2012.

PI cited for high citations

CQT Principal Investigator Vlatko Vedral was named a 2017 Highly Cited Researcher by Clarivate Analytics in November. Clarivate says: “Ranking in the top 1% by citations for field and publication year in Web of Science, Highly Cited Researchers are leading the way in solving the world’s biggest challenges”. Vlatko’s research interests are in quantum information and the foundations of quantum physics. He has published research on topics including quantum thermodynamics, quantum biology and quantum gravity.

Celebrating CQT graduates

In 2017, eleven students in the CQT programme completed their PhD. Each has made a novel contribution to the sum of human knowledge – and acquired learning and skills that they are now ready to bring into the next stage of their careers. “It’s a fantastic time to be working in quantum technologies,” says CQT Director Artur Ekert. “Governments continue to see the value in supporting research in our field. At the same time, companies are expanding their quantum programs and we’re seeing new startups. CQT’s graduates will have many opportunities.” Read more about CQT’s graduate programme and graduating students on pp.58–61.

CQT hosts Singapore’s Deputy Prime Minister

Singapore’s Deputy Prime Minister Mr Teo Chee Hean toured CQT on 26 September with a delegation from the National Research Foundation (NRF), Ministry of Education and Ministry of Finance. He also visited the Centre for Advanced 2D Materials, which neighbours CQT on the NUS campus. Professor Tan Chorh Chuan, President of the National University of Singapore, hosted the visit with CQT’s Deputy Director Lai Choy Heng, Principal Investigators and staff. OPM Teo visited in his capacity as Chairman of NRF. CQT research projects highlighted during the visit included participation in the NUS-Singtel Cyber Security R&D Laboratory (pictured above) and an atomic clock being designed with the goal of being the world’s most accurate.

PI cited for high citations

CQT Principal Investigator Vlatko Vedral was named a 2017 Highly Cited Researcher by Clarivate Analytics in November. Clarivate says: “Ranking in the top 1% by citations for field and publication year in Web of Science, Highly Cited Researchers are leading the way in solving the world’s biggest challenges”. Vlatko’s research interests are in quantum information and the foundations of quantum physics. He has published research on topics including quantum thermodynamics, quantum biology and quantum gravity.

Celebrating CQT graduates

In 2017, eleven students in the CQT programme completed their PhD. Each has made a novel contribution to the sum of human knowledge – and acquired learning and skills that they are now ready to bring into the next stage of their careers. “It’s a fantastic time to be working in quantum technologies,” says CQT Director Artur Ekert. “Governments continue to see the value in supporting research in our field. At the same time, companies are expanding their quantum programs and we’re seeing new startups. CQT’s graduates will have many opportunities.” Read more about CQT’s graduate programme and graduating students on pp.58–61.

Boost for early-career CQT scientist

CQT Senior Research Fellow James Grieve was selected to take part in two prestigious conferences in 2017. In January, he was a participant in the Global Young Scientists Summit 2017 organised by Singapore’s National Research Foundation for the “world’s outstanding PhDs and post-doctoral fellows under the age of 35”. He also won a place at the Commonwealth Science Conference 2017, an event organised by the UK’s Royal Society and NRF, in June. James has been working at CQT on quantum optics in the group of Alexander Ling since 2012.

Quantum Shorts on screen

“It was funny and fab”. “Mind boggling and tells you thinking.” “It was really unique to learn through the films.” These are comments from visitors to the Quantum Shorts event organised by CQT with Singapore’s ArtScience Museum in February. It was a screening over four days of ten short films inspired by quantum physics. The ten films were finalists in CQT’s Quantum Shorts film festival, run with media partners Nature and Scientific American, and international scientific partners and screening partners. The ultimate winner was a film called Novae (by Thomas Vanz, pictured). Quantum Shorts is an annual competition for creative works with quantum themes – it returned in September 2017 with a call for flash fiction.
Former President Dr Tony Tan visits

Dr Tony Tan Keng Yam, President of Singapore 2011–2017, was instrumental in the founding of CQT. He was Chairman of Singapore’s National Research Foundation when it created the Research Centres of Excellence programme, under which CQT was the first centre established. Dr Tan visited CQT on 10 November to see the progress made in the decade since.

He was hosted by CQT’s Director Artur Ekert. Speaking to CQTians at the end of his visit, he said “Under the direction of Artur and the senior management, all of you have made a great contribution to Singapore. I congratulate the CQT and all of you, and I hope you have many interesting problems to work with in the coming years.”

Collaborations in dance and music

CQT was a creative partner for the NUS Arts Festival 2017: Brave New Worlds, continuing an association begun in 2016. The festival, held over two weeks in March, had an audience of some 10,000 people. CQT collaborated with NUS Indian Dance on Sambhavna, a full-length work that considered the movement of dancers (pictured on a visit to CQT) as particles, as well as taking a philosophical and historical look at the intersection of science and arts. CQT also supported the inclusion in the festival programme of The Quantum Music Project with LP Duo and Dragom Novkovic, an EU-funded collaboration of physicists, musicians and engineers. CQT researchers Vlatko Vedral and Andrew Garner are involved in the project. (Photo: Back Alley Creations)

Complexity workshop brings fields together

The Workshop on Interdisciplinary Frontiers of Quantum and Complexity Sciences was held in January in Singapore as part of a project supported by the John Templeton Foundation. “At the outset, complexity and quantum science appear quite different. One commonly deals with networks of interacting systems on the macroscopic scale, while the other describes matter at the quantum mechanical level. Yet both fields seek to understand nature by studying how it fundamentally processes information,” says Mila Gu, a project leader and meeting co-organiser. He is an Assistant Professor at the Nanyang Technological University and Research Assistant Professor at CQT. Some 45 scientists attended the event, which also featured a public talk at the Science Centre Singapore. Videos of all talks are online.

The Workshop on Interdisciplinary Frontiers of Quantum and Complexity Sciences was held in January in Singapore as part of a project supported by the John Templeton Foundation. “At the outset, complexity and quantum science appear quite different. One commonly deals with networks of interacting systems on the macroscopic scale, while the other describes matter at the quantum mechanical level. Yet both fields seek to understand nature by studying how it fundamentally processes information,” says Mila Gu, a project leader and meeting co-organiser. He is an Assistant Professor at the Nanyang Technological University and Research Assistant Professor at CQT. Some 45 scientists attended the event, which also featured a public talk at the Science Centre Singapore. Videos of all talks are online.

Director wins public honour

CQT’s Director Artur Ekert was presented with the Public Administration Medal (Silver) in Singapore’s National Day Awards on 9 August. He is one of 90 recipients of the Medal in 2017. It is presented for “outstanding efficiency, competence and industry”. On the news, Artur said “I am glad that our joint effort to make Singapore a quantum island is noticed and recognised.”

24

A conference that's Asian – and global

The 17th Asian Quantum Information Science (AQIS) conference came to the National University of Singapore 4–8 September, drawing over 100 researchers from the region and beyond. Although it has always been held in Asia, AQIS has developed a strong reputation among the international quantum information community and draws participants from around the world. The programme included eight invited talks, two invited tutorial talks, 46 contributed talks and 88 posters. The tutorial talks were given by Peter Hoyer from the University of Calgary on “Quantum walks” and by Charles Bennett from IBM Research on “Forging the culture of quantum information science”.

We are 10

On 7 December 2017, CQT celebrated its tenth birthday. To mark the occasion, we held a two-day conference featuring distinguished invited speakers, contributed talks by alumni and posters from our community. The event followed a year-long survey of CQT’s research achievements through colloquia delivered by CQT Principal Investigators. These talks, providing an introduction to some of CQT’s major research directions, are available to watch on the Centre’s YouTube channel. We also had artists from local company IdeaInk create sketchnotes of the talks. See pictures on pp.70–73.

We are 10

On 7 December 2017, CQT celebrated its tenth birthday. To mark the occasion, we held a two-day conference featuring distinguished invited speakers, contributed talks by alumni and posters from our community. The event followed a year-long survey of CQT’s research achievements through colloquia delivered by CQT Principal Investigators. These talks, providing an introduction to some of CQT’s major research directions, are available to watch on the Centre’s YouTube channel. We also had artists from local company IdeaInk create sketchnotes of the talks. See pictures on pp.70–73.

Colloquiums, colloquiums.

On 7 December 2017, CQT celebrated its tenth birthday. To mark the occasion, we held a two-day conference featuring distinguished invited speakers, contributed talks by alumni and posters from our community. The event followed a year-long survey of CQT’s research achievements through colloquia delivered by CQT Principal Investigators. These talks, providing an introduction to some of CQT’s major research directions, are available to watch on the Centre’s YouTube channel. We also had artists from local company IdeaInk create sketchnotes of the talks. See pictures on pp.70–73.

Collaborations in dance and music

CQT was a creative partner for the NUS Arts Festival 2017: Brave New Worlds, continuing an association begun in 2016. The festival, held over two weeks in March, had an audience of some 10,000 people. CQT collaborated with NUS Indian Dance on Sambhavna, a full-length work that considered the movement of dancers (pictured on a visit to CQT) as particles, as well as taking a philosophical and historical look at the intersection of science and arts. CQT also supported the inclusion in the festival programme of The Quantum Music Project with LP Duo and Dragom Novkovic, an EU-funded collaboration of physicists, musicians and engineers. CQT researchers Vlatko Vedral and Andrew Garner are involved in the project. (Photo: Back Alley Creations)
Spin lens for quantum information

An international team including CQT Research Fellow Alexander Glaetzle proposed a scheme to help transfer information from light to matter, with potential applications in quantum networks and computing.

The team’s innovation is showing how a cloud of atoms can work as a ‘lens’, focusing a light-induced excitation from a single photon into one or few atoms in the system. “Ultimately, the goal is to map photonic qubits with high efficiency onto single atoms, such that the well-developed quantum computing toolbox with single and two-qubit gates becomes available,” says Alexander.

The physicists present several variants of their lenses, including multifocal ones, where a single delocalised spin excitation is transformed into a state with entanglement between excitations at spatially separated focal points. They simulate how these ‘quantum spin lenses’ could be implemented in arrays of Rydberg atoms, which are atoms in a highly excited state.

Physical Review X 7, 031049 (2017)

When communication exceeds information

CQT PhD student Anurag Anshu collaborated in work presented at one of the world’s top conferences in computer science. The work concerns how much communication it takes to complete certain tasks, compared to how much information the tasks involve.

This relates to the idea of compression. Compressing a picture, for example, maintains the file’s information content while minimising the communication needed to transmit it.

A few years ago, computer scientists discovered a task with an unexpected property: the task required very little information but took lots of communication to complete. “It’s like the antithesis of what computer scientists want,” says Anurag. He and his collaborators investigated whether similar tasks could exist with quantum communication, when bits can be entangled or exist in superposition.

They found that even with such quantum powers there exist tasks that take exponentially more communication than information to complete. This shows a limit to what kind of message compression is possible in the quantum world.

Slide show: IQOQI/Harald Ritsch

Stretchy waveguides

CQT researchers have started building optical devices from an unexpected material: a polymer like that used to seal the edges of sinks. A big advantage is being able to tune the devices’ behaviour by simply stretching or bending the flexible material.

“This research started out sounding like crazy talk and yet it worked,” says Alexander Ling, the group’s Principal Investigator. The team demonstrated a tunable beamsplitter created from polydimethyl siloxane (PDMS).

It offers a new approach to building integrated optical systems, for example for feeding light into optical fibers or for miniaturising lab experiments. Other groups had built waveguides in PDMS before, but without using the flexibility for tunability. The project was carried out with collaborators at the NUS Centre for Advanced 2D Materials and Graphene Research Centre.

Lens trick doubles odds for interaction

It’s not easy to bounce a single particle of light off a single atom that is less than a billionth of a metre wide. However, researchers at CQT found a way to double the odds of success, an innovation that might be useful in quantum computing and metrology.

CQT’s Wilson Chin Yue Sum, Matthias Steiner and Christian Kurtsiefer compared how much light a single Rubidium atom scatters when the light comes from just one direction, versus when it comes from two. When the atom was sandwiched at the focal point between two strongly-focusing lenses, it scattered red photons twice as effectively as when light came through just one lens. This double-lens configuration is borrowed from a super-resolution imaging technique known as 4Pi microscopy.

With this setup, the atom changed not only the photons’ direction but also their spacing, which is evidence of nonlinear interaction. Nonlinear effects are crucial for processing information stored in light.

Quantum replicants to win on efficiency

“Humans have long been fascinated with the idea of replicating nature through machines” says CQT’s Mile Gu. He is no exception: with collaborators, he investigated ‘input-output processes’, assessing the mathematical framework used to describe arbitrary devices that make future decisions based on stimuli received from the environment.

In almost all cases, the team found, a quantum device is more efficient than a classical device. That’s because classical devices have to store more past information than is necessary to simulate the future. Co-author Jayne Thompson explains: “Classical systems always have a definitive reality. They need to retain enough information to respond correctly to each future stimulus. By engineering a quantum device so that different inputs are like different quantum measurements, we can replicate the same behaviour without retaining a complete description of how to respond to each individual question.”

Barium qubit promising for telecoms

CQT Principal Investigator Manas Mukherjee and his team have built a barium ion quantum bit (qubit) that has fast operation speeds close to telecoms wavelengths. These qubits could be engineered into future quantum repeaters or other network elements that may integrate with existing optical fibre networks.

Barium ions interact with infrared light of wavelength 1762nm, which is just outside the telecom U-band. The team measured a barium ion flipping between its ‘0’ and ‘1’ states some 255,000 times per second, or 250 kHz. Previously the best performing barium qubit managed only 50KHz. The team credits new laser systems for their achievement. They designed their experiment to use diode lasers at 1762nm that have only become available in the past few years. Previous experiments used noisier fibre lasers. Another advantage of the all-diode design is that it could be miniaturised.

Quantum key distribution (QKD) is a technique to exchange encryption keys for secure communication – but current QKD systems suffer from low secret key rates. It’s enough to protect an organisation’s most sensitive data, but demand could outstrip supply if the organisation wants to use QKD for all its data traffic. CQT Fellow Charles Lim and his collaborators demonstrated a QKD protocol that achieves a record speed of 26.2 megabits per second over the equivalent of 20km of optical fibre.

The trick to the team’s success was using higher-dimensional quantum bits to distribute secret keys. The team adopted the ‘prepare and measure’ protocol. Secret bits are encoded in the arrival time of single photons, while measurements of the complementary phase states reveal any information leakage. “Our techniques have resolved some of the major challenges for high-dimensional QKD systems based on time-bin encoding, and could potentially be used for image and video encryption, as well as data transfer involving large encrypted databases,” says Charles, who is also an Assistant Professor in the NUS Department of Electrical and Computer Engineering.

Barium qubit promising for telecoms

CQT Principal Investigator Manas Mukherjee and his team have built a barium ion quantum bit (qubit) that has fast operation speeds close to telecoms wavelengths. These qubits could be engineered into future quantum repeaters or other network elements that may integrate with existing optical fibre networks.

Barium ions interact with infrared light of wavelength 1762nm, which is just outside the telecom U-band. The team measured a barium ion flipping between its ‘0’ and ‘1’ states some 255,000 times per second, or 250 kHz. Previously the best performing barium qubit managed only 50KHz. The team credits new laser systems for their achievement. They designed their experiment to use diode lasers at 1762nm that have only become available in the past few years. Previous experiments used noisier fibre lasers. Another advantage of the all-diode design is that it could be miniaturised.

Quantum key distribution (QKD) is a technique to exchange encryption keys for secure communication – but current QKD systems suffer from low secret key rates. It’s enough to protect an organisation’s most sensitive data, but demand could outstrip supply if the organisation wants to use QKD for all its data traffic. CQT Fellow Charles Lim and his collaborators demonstrated a QKD protocol that achieves a record speed of 26.2 megabits per second over the equivalent of 20km of optical fibre.

The trick to the team’s success was using higher-dimensional quantum bits to distribute secret keys. The team adopted the ‘prepare and measure’ protocol. Secret bits are encoded in the arrival time of single photons, while measurements of the complementary phase states reveal any information leakage. “Our techniques have resolved some of the major challenges for high-dimensional QKD systems based on time-bin encoding, and could potentially be used for image and video encryption, as well as data transfer involving large encrypted databases,” says Charles, who is also an Assistant Professor in the NUS Department of Electrical and Computer Engineering.

Barium qubit promising for telecoms

CQT Principal Investigator Manas Mukherjee and his team have built a barium ion quantum bit (qubit) that has fast operation speeds close to telecoms wavelengths. These qubits could be engineered into future quantum repeaters or other network elements that may integrate with existing optical fibre networks.

Barium ions interact with infrared light of wavelength 1762nm, which is just outside the telecom U-band. The team measured a barium ion flipping between its ‘0’ and ‘1’ states some 255,000 times per second, or 250 kHz. Previously the best performing barium qubit managed only 50KHz. The team credits new laser systems for their achievement. They designed their experiment to use diode lasers at 1762nm that have only become available in the past few years. Previous experiments used noisier fibre lasers. Another advantage of the all-diode design is that it could be miniaturised.

Quantum key distribution (QKD) is a technique to exchange encryption keys for secure communication – but current QKD systems suffer from low secret key rates. It’s enough to protect an organisation’s most sensitive data, but demand could outstrip supply if the organisation wants to use QKD for all its data traffic. CQT Fellow Charles Lim and his collaborators demonstrated a QKD protocol that achieves a record speed of 26.2 megabits per second over the equivalent of 20km of optical fibre.

The trick to the team’s success was using higher-dimensional quantum bits to distribute secret keys. The team adopted the ‘prepare and measure’ protocol. Secret bits are encoded in the arrival time of single photons, while measurements of the complementary phase states reveal any information leakage. “Our techniques have resolved some of the major challenges for high-dimensional QKD systems based on time-bin encoding, and could potentially be used for image and video encryption, as well as data transfer involving large encrypted databases,” says Charles, who is also an Assistant Professor in the NUS Department of Electrical and Computer Engineering.

Barium qubit promising for telecoms

CQT Principal Investigator Manas Mukherjee and his team have built a barium ion quantum bit (qubit) that has fast operation speeds close to telecoms wavelengths. These qubits could be engineered into future quantum repeaters or other network elements that may integrate with existing optical fibre networks.

Barium ions interact with infrared light of wavelength 1762nm, which is just outside the telecom U-band. The team measured a barium ion flipping between its ‘0’ and ‘1’ states some 255,000 times per second, or 250 kHz. Previously the best performing barium qubit managed only 50KHz. The team credits new laser systems for their achievement. They designed their experiment to use diode lasers at 1762nm that have only become available in the past few years. Previous experiments used noisier fibre lasers. Another advantage of the all-diode design is that it could be miniaturised.

Quantum key distribution (QKD) is a technique to exchange encryption keys for secure communication – but current QKD systems suffer from low secret key rates. It’s enough to protect an organisation’s most sensitive data, but demand could outstrip supply if the organisation wants to use QKD for all its data traffic. CQT Fellow Charles Lim and his collaborators demonstrated a QKD protocol that achieves a record speed of 26.2 megabits per second over the equivalent of 20km of optical fibre.

The trick to the team’s success was using higher-dimensional quantum bits to distribute secret keys. The team adopted the ‘prepare and measure’ protocol. Secret bits are encoded in the arrival time of single photons, while measurements of the complementary phase states reveal any information leakage. “Our techniques have resolved some of the major challenges for high-dimensional QKD systems based on time-bin encoding, and could potentially be used for image and video encryption, as well as data transfer involving large encrypted databases,” says Charles, who is also an Assistant Professor in the NUS Department of Electrical and Computer Engineering.

Barium qubit promising for telecoms

CQT Principal Investigator Manas Mukherjee and his team have built a barium ion quantum bit (qubit) that has fast operation speeds close to telecoms wavelengths. These qubits could be engineered into future quantum repeaters or other network elements that may integrate with existing optical fibre networks.

Barium ions interact with infrared light of wavelength 1762nm, which is just outside the telecom U-band. The team measured a barium ion flipping between its ‘0’ and ‘1’ states some 255,000 times per second, or 250 kHz. Previously the best performing barium qubit managed only 50KHz. The team credits new laser systems for their achievement. They designed their experiment to use diode lasers at 1762nm that have only become available in the past few years. Previous experiments used noisier fibre lasers. Another advantage of the all-diode design is that it could be miniaturised.

Quantum key distribution (QKD) is a technique to exchange encryption keys for secure communication – but current QKD systems suffer from low secret key rates. It’s enough to protect an organisation’s most sensitive data, but demand could outstrip supply if the organisation wants to use QKD for all its data traffic. CQT Fellow Charles Lim and his collaborators demonstrated a QKD protocol that achieves a record speed of 26.2 megabits per second over the equivalent of 20km of optical fibre.

The trick to the team’s success was using higher-dimensional quantum bits to distribute secret keys. The team adopted the ‘prepare and measure’ protocol. Secret bits are encoded in the arrival time of single photons, while measurements of the complementary phase states reveal any information leakage. “Our techniques have resolved some of the major challenges for high-dimensional QKD systems based on time-bin encoding, and could potentially be used for image and video encryption, as well as data transfer involving large encrypted databases,” says Charles, who is also an Assistant Professor in the NUS Department of Electrical and Computer Engineering.
Cross-Kerr nonlinearity in ions

“We have a very clear demonstration of an effect that people have been thinking about in optics for decades,” says CQT’s Dmitri Matsukevich, who led research resulting in two papers in Physical Review Letters. One was featured as an Editor’s Suggestion.

In optics, the Kerr effect is a change in the speed of light in a material because of the material’s interaction with the light’s electric field. The cross-Kerr nonlinearity arises when one light pulse affects the propagation of another. The CQT group saw an analogous effect between the two modes of vibration of two or three cold, trapped Ytterbium ions. The modes are axial and radial – vibrations along or out from a line – and group showed that vibrations in one mode can excite vibrations, phonons, in the second – a behaviour known as parametric oscillation. With the setup tuned differently, the team could also measure frequency shifts in one mode to count the number of phonons in the second. The technique offers new tools for experiments in quantum thermodynamics and quantum computing.

Qubit, qudit, ququart

The dimension of a quantum system tells you how much information the system can store. A quantum bit, or qubit, has states equated with ‘0’ and ‘1’. A qudit is a three dimensional system with states ‘0’, ‘1’ and ‘2’. A ququart has four dimensions. Accurate measurement is important for proper implementation of quantum communication and quantum computing protocols, but it turns out, said CQT’s Valerio Scarani, that “there is a conceptual problem in how dimension witnesses are defined”. The CQT team found that dimension witnesses cannot distinguish between a group of systems of low dimension and a truly, irreducibly, high-dimensional state. You could think of it like trying to assess a vehicle by counting wheels. The old witnesses couldn’t tell two two-wheeled motorbikes apart from a four-wheeled truck. Having pointed out the problem, the team also proposed a witness that can detect irreducible dimension four.

Cat protection

A thought experiment puts Schrodinger’s cat into a superposition of alive and dead. According to work by CQT’s Victor Basidias and Dimitris Angelakis with collaborators in Germany, shaking the two-wheeled motorbikes apart from a four-wheeled truck. Having pointed out the problem, the team also proposed a witness that can detect irreducible dimension four.

Quantum computers became famous in the 1990s with the discovery that they could break some classical cryptography schemes – but maybe quantum computing will instead be known for making the future of cloud computing secure,” says Joseph Fitzsimons, a PhD student with CQT Principal Investigator Joseph Fleskova. The researchers and their collaborators have proposed a way you could use a quantum computer securely, even over the internet. The technique could hide both your data and program from the computer itself. Researchers had previously shown that users who can make or measure quantum bits could disguise a computation performed on a remote quantum computer. Work in 2017 by Joseph, Atul and their collaborators extended that power to those who can only send classical bits – like someone using a quantum computer over the internet.

The scheme applies to a form of quantum computing driven by measurements. The hope for security comes from the quantum computer not knowing which steps of the measurement sequence do what: whether the measurements are inputs, operations or outputs. If the owner of the quantum computer tries to reverse engineer the sequence, this ambiguity leads to many possible interpretations of what calculation was done. The true calculation could be hidden among the many, like a needle in a haystack. “The set of all possible computations is exponentially large – that’s one of the things we prove in the paper – and therefore the chance of guessing the real computation is exponentially small,” says Joseph. Physical Review X 7, 031004
Dimitris Angelakis describes his collaboration with Google’s quantum computing team, which led to a paper in Science

When I submitted a proposal to join CQT back in 2010, the idea was to study what we can do with interacting photons for quantum simulations. This year, in collaboration with the scientists at Google building quantum chips, we’ve realised a simulation that sets a benchmark for the field.

Using a chain of nine superconducting quantum bits (qubits), we simulated the surprising and beautiful pattern of the ‘Hofstadter butterfly’, a fractal structure first predicted in 1976 to describe the behaviour of electrons. We also studied the complex phenomenon of ‘many-body localisation’. This is a quantum phase transition – akin to the phase change that happens when water freezes into ice – that determines whether materials are conductors or insulators.

My group members Jirawat Tangpanitanon, Victor Bastidas, and I collaborated with the group led by John Martinis at Google and the University of California, Santa Barbara (UCSB) to realise these experiments. The results were published 1 December in Science. The simulated butterfly was reported by media including Singapore’s The Straits Times.

How it all began

Ten years ago, people were already familiar with the idea of using atoms or ions to simulate physical problems, for example in material science, that may be hard to solve computationally. For example, today’s computers struggle to calculate why some materials are insulators while others are conductors or superconductors.

The idea of using photons for a quantum simulator is newer. It was only in 2007 that I published the first paper proposing this approach. Initially, my plan at CQT was to build a theoretical framework to understand what is possible, but at the same time we tried to reach out to experimentalists to test our ideas.

The Noble Laureate Richard Feynman had grasped this problem since the 1980s, suggesting that we could use a more controllable and perhaps artificial quantum system – a ‘quantum computer’ or ‘quantum simulator’ – to study these systems.

PROJECTS IN FOCUS

Quantum simulation on a superconducting chip

When I submitted a proposal to join CQT back in 2010, the idea was to study what we can do with interacting photons for quantum simulations. This year, in collaboration with the scientists at Google building quantum chips, we’ve realised a simulation that sets a benchmark for the field.

Using a chain of nine superconducting quantum bits (qubits), we simulated the surprising and beautiful pattern of the ‘Hofstadter butterfly’, a fractal structure first predicted in 1976 to describe the behaviour of electrons. We also studied the complex phenomenon of ‘many-body localisation’. This is a quantum phase transition – akin to the phase change that happens when water freezes into ice – that determines whether materials are conductors or insulators.

My group members Jirawat Tangpanitanon, Victor Bastidas, and I collaborated with the group led by John Martinis at Google and the University of California, Santa Barbara (UCSB) to realise these experiments. The results were published 1 December in Science. The simulated butterfly was reported by media including Singapore’s The Straits Times.

How it all began

Ten years ago, people were already familiar with the idea of using atoms or ions to simulate physical problems, for example in material science, that may be hard to solve computationally. For example, today’s computers struggle to calculate why some materials are insulators while others are conductors or superconductors.

The Noble Laureate Richard Feynman had grasped this problem since the 1980s, suggesting that we could use a more controllable and perhaps artificial quantum system – a ‘quantum computer’ or ‘quantum simulator’ – to study these systems.

The idea of using photons for a quantum simulator is newer. It was only in 2007 that I published the first paper proposing this approach. Initially, my plan at CQT was to build a theoretical framework to understand what is possible, but at the same time we tried to reach out to experimentalists to test our ideas.
In the last week of the programme, we met Pedram Roushan, who is a quantum information scientist. Jirawat and See Tian Feng, another of my PhD students, came with me.

In the localised phase, photons should get stuck in certain areas of the qubit chain. Quantum computers may one day exploit this effect to protect stored quantum information.

Our method is like hitting a bell. The sound it makes is a superposition of all the basic harmonics. By hitting it in different positions a few times and listening long enough, one can resolve the hidden notes. We do the same with the quantum chip, hitting it with photons and then following their evolution in time. The technique maps the splits and shifts of the electron’s energy levels of the photons stored in the nine qubits.

To study many-body localisation, we needed to hit the qubits with photons simultaneously. We also needed the qubits to be disorderly, which we can get by programming some randomness into their properties.

It was predicted in the 1980s that disorder in a material could block the movement of particles through it. That’s called localisation. If the particles can interact with each other, the problem becomes ‘many-body’ – and much harder to model.

In the localised phase, photons should get stuck in certain areas of the qubit chain. Quantum computers may one day exploit this effect to protect stored quantum information.

To carry out the experiments, Pedram had to tune the parameters on Google’s 9-qubit chip. We didn’t hear from him for a while, and then suddenly he sent data. We ran the experiment a few times, running different parameters, getting better data.

We found precursors of many-body localisation by applying our spectroscopy technique to different regimes of disorder and interaction. For just two photons in nine qubits, a conventional computer could simulate the behaviour we expect – these predictions were in good agreement with our results. But...we had a few more qubits – and there are already chips with some 20 qubits, and promises of 50 – the problem would become intractable for classical machines. That’s when quantum simulators will come into their own.

This work feels like a culmination of my scientific existence in CQT, in the sense that it delivers on the proposal I first put forward ten years ago. We’re thinking about what comes next. We have some interesting ideas for simulations of quantum problems that we can get out of the chip, and we’re looking at other areas like applications of quantum approaches in machine learning and big data. It’s exciting to see the huge range of applicability of quantum simulators.

This took time. The first successful experiment for our group was in 2014 with collaborators in Germany. We’ve had to learn from attempts that didn’t work – sometimes experiments were not tunable to the regime we needed – and find ways to adapt.

In 2015, I was invited to participate in a two-month programme at the Kavli Institute of Theoretical Physics at UCSB dedicated to this new field. I helped to create, now known as Many-Body Physics with Light. The institute holds these focussed programmes to bring together people in hot topics. There is one talk per day with the rest of the time for interaction and collaboration. Jirawat and See Tian Feng, another of my PhD students, came with me.

In the last week of the programme, we met Pedram Roushan, who is a quantum information engineer with Google. We went through the early papers on simulations with photons to see what we might be able to do with Google’s superconducting qubits. We had the idea to look at many-body localisation – and Jirawat started to think about what kind of things you can control. They decided to try and asked me to figure it out. I spent time writing notes to explain the ideas and even doing some data analysis. The kind of measurement we did in the paper needed the good control that Google has over its qubits.

Since the paper came out, I’ve had lots of invitations from my home country, Thailand, to give talks. I hope that a centre like CQT will exist in Thailand someday.

About the author

Dimitris is a Principal Investigator at CQT and Associate Professor at the Technical University of Crete, Greece. His group works in quantum technologies with a focus in implementations of quantum computation and quantum simulation with quantum optical systems.

A PhD contribution

By Jirawat Tangpanitanon

To be an author on a Science paper, I am standing on the shoulders of giants. My supervisor Dimitris Angelakis has spent 15 years building his expertise in this field. I was a third year PhD student when we started this project, and this is only my second paper.

Since I came to CQT, I have done a lot of work in Dimitris’ group on quantum simulations. That familiarity helped me to come up with ideas. I was walking in Kent Ridge park when I realised how to do the measurements. The theory of the tool itself, any undergraduate should be able to understand.

It’s nice as a theorist to collaborate in an experiment. I spent time writing notes to explain the ideas and even doing some data analysis. The kind of measurement we did in the paper needed the good control that Google has over its qubits.

Since the paper came out, I’ve had lots of invitations from my home country, Thailand, to give talks. I hope that a centre like CQT will exist in Thailand someday.

Jirawat (left) is a PhD student under the supervision of Dimitris (right) and a co-author on the result.

To be an author on a Science paper, I am standing on the shoulders of giants. My supervisor Dimitris Angelakis has spent 15 years building his expertise in this field. I was a third year PhD student when we started this project, and this is only my second paper.

Since I came to CQT, I have done a lot of work in Dimitris’ group on quantum simulations. That familiarity helped me to come up with ideas. I was walking in Kent Ridge park when I realised how to do the measurements. The theory of the tool itself, any undergraduate should be able to understand.

It’s nice as a theorist to collaborate in an experiment. I spent time writing notes to explain the ideas and even doing some data analysis. The kind of measurement we did in the paper needed the good control that Google has over its qubits.

Since the paper came out, I’ve had lots of invitations from my home country, Thailand, to give talks. I hope that a centre like CQT will exist in Thailand someday.

Jirawat (left) is a PhD student under the supervision of Dimitris (right) and a co-author on the result.

A PhD contribution

By Jirawat Tangpanitanon

To be an author on a Science paper, I am standing on the shoulders of giants. My supervisor Dimitris Angelakis has spent 15 years building his expertise in this field. I was a third year PhD student when we started this project, and this is only my second paper.

Since I came to CQT, I have done a lot of work in Dimitris’ group on quantum simulations. That familiarity helped me to come up with ideas. I was walking in Kent Ridge park when I realised how to do the measurements. The theory of the tool itself, any undergraduate should be able to understand.

It’s nice as a theorist to collaborate in an experiment. I spent time writing notes to explain the ideas and even doing some data analysis. The kind of measurement we did in the paper needed the good control that Google has over its qubits.

Since the paper came out, I’ve had lots of invitations from my home country, Thailand, to give talks. I hope that a centre like CQT will exist in Thailand someday.

Jirawat (left) is a PhD student under the supervision of Dimitris (right) and a co-author on the result.
research labs. are starting their own quantum computing number in the dozens. Major Chinese tech doing quantum hardware and software promises to be not far behind. Startups a 50 qubit quantum computer, and Google space. In November 2017, IBM announced growing interest of industry in the quantum The excitement surrounding quantum computers on cybersecurity – from communication to currency. Troy Lee explains

CQT's computer scientists are looking at the potential impact of quantum computers on cybersecurity, from communication to currency. Troy Lee explains.

One area that will certainly be affected by the development of quantum computers is cryptography. Shor’s quantum algorithm to efficiently solve the factoring and discrete logarithm problems can break RSA and elliptic curve cryptography, two key protocols that are used to secure the internet and financial transactions. Together with other computer scientists at CQT, I am looking into further impacts of quantum computers on cryptography, and how to develop quantum safe cryptographic schemes.

While quantum computers large enough to break today’s cryptographic protocols are still some ways away, the US governmental agency NIST is already preparing a standard for quantum safe cryptography, with a call for proposals that ended in late 2017 (see box: Securing the future on p.39). One proposal was submitted by CQT's very own Divesh Aggarwal, Anupam Prakash, and Miklos Santha and their collaborator.

We also turned our attention to another hot topic of 2017, the decentralised ‘cryptocurrency’ Bitcoin. Largely driven by its rise in price—the price of bitcoin rose over thirteenfold during the course of the year—Bitcoin has risen to global prominence. The entire space of cryptocurrencies has seen an explosion of interest. There are now nearly 1400 different coins listed at coinmarketcap.com, with total market valuation of over 700 billion dollars.

What will be the impact of quantum computers on Bitcoin? This was a question that had already shown up on Bitcoin forums, and the Bitcoin community was roughly aware of certain attacks that could be made by a quantum computer. No very precise or quantitative study had been made, however, which is what Divesh, Miklos and I tried to do in the paper “Quantum attacks on Bitcoin, and how to prevent them”, together with our Australian-based collaborators Marco Tomamichel and Gavin Brennen.

BASICS OF BITCOIN

Before getting to our results, let me give a brief overview of how the Bitcoin protocol works. There are two key ideas: digital signatures and the proof-of-work.

A digital signature is a cryptographic primitive that imitates the ideal functionality of a handwritten signature—Alice's signature on a message authenticates that Alice created the message and was involved in its creation, without revealing any information about the solution itself. A digital signature can be thought of as a form of a zero-knowledge proof, a cool idea from theoretical computer science developed in the mid 1980s. A zero-knowledge proof is a way for Alice to prove that she knows the solution to a problem without giving away any information about the solution itself. In digitally signing a message, Alice proves that she knows the secret key corresponding to her public key, without revealing any information about the secret key. Anyone who knows Alice’s public key can verify whether or not the message was signed correctly.

At a high level, a transaction in Bitcoin is simply a message, for example, “I, Alice, send 3 bitcoins that I own to Bob”. Now you can see the need for the functionality of a digital signature—Alice needs a way to authenticate that she is sending this message. Otherwise, Bob himself could send a message saying that Alice was sending him 3 bitcoins, thereby stealing her coins.

We also need a mechanism to protect Bob in this scenario from what is known as a double spending attack. Alice could try to spend the same bitcoins multiple times, for example sending them to Bob and also to Charlie.

Before getting to our results, let me give a brief overview of how the Bitcoin protocol works. There are two key ideas: digital signatures and the proof-of-work.

A digital signature is a cryptographic primitive that imitates the ideal functionality of a handwritten signature—Alice’s signature on a message authenticates that Alice created the message and was involved in its creation, without revealing any information about the solution itself. A digital signature can be thought of as a form of a zero-knowledge proof, a cool idea from theoretical computer science developed in the mid 1980s. A zero-knowledge proof is a way for Alice to prove that she knows the solution to a problem without giving away any information about the solution itself. In digitally signing a message, Alice proves that she knows the secret key corresponding to her public key, without revealing any information about the secret key. Anyone who knows Alice’s public key can verify whether or not the message was signed correctly.

At a high level, a transaction in Bitcoin is simply a message, for example, “I, Alice, send 3 bitcoins that I own to Bob”. Now you can see the need for the functionality of a digital signature—Alice needs a way to authenticate that she is sending this message. Otherwise, Bob himself could send a message saying that Alice was sending him 3 bitcoins, thereby stealing her coins.

We also need a mechanism to protect Bob in this scenario from what is known as a double spending attack. Alice could try to spend the same bitcoins multiple times, for example sending them to Bob and also to Charlie.

Preventing a double spending attack is where the proof-of-work comes in. All messages encoding bitcoin transactions are recorded in a ledger. This ledger consists of a chain of blocks, each block being a list of transactions. The ledger is the definitive account of all bitcoin transactions that have taken place, thus it is important that everyone agrees on the contents of the ledger. Achieving this consensus is the most difficult problem in creating a decentralized currency.

Bitcoin achieves this consensus by means of a proof-of-work. New blocks are added to the chain by so-called miners who compete to decide who has the right to create a new block by solving a computational search problem. The difficulty of this search

The excitement surrounding quantum computers is palpable. It’s clearest in the growing interest of industry in the quantum space. In September 2017, IBM announced a 50-qubit quantum computer, and Google promises to be not far behind. Startups doing quantum hardware and software are starting their own quantum computing research labs.

Crypto vs quantum computers

CQT's computer scientists are looking at the potential impact of quantum computers on cybersecurity— from communication to currency. Troy Lee explains.
problem is adjusted so that a solution is found by the network every 10 minutes on average. Once a miner solves the search problem, he broadcasts the newly created block to the rest of the network. In compensation for his effort, the winning miner receives a reward in bitcoin.

A difficulty arises when two miners solve the search problem in the same moment and broadcast different new blocks to the network. In this case, there is a fork in the network. In the event of a fork, the longest chain wins. To win the search competition more than 50% of the time would require spending more than one billion USD on specialized computational hardware.

On the other hand, the maximum gate speeds of near term quantum devices are projected to be at most 100 million operations per second. This massive gap in speed essentially negates the quantum speedup achieved by Grover’s algorithm. Thus quantum computers do not represent a security threat to the Bitcoin proof-of-work in the near future.

The purpose of the proof-of-work is so the true history is the true history of bitcoin transactions. The rule in Bitcoin is that the true history is the longest chain. To win the search competition more than 50% of the time would require an enormous investment in computing power – at the current difficulty level, it would require spending more than one billion USD on specialized computational hardware.

Problem is adjusted so that a solution is found by the network every 10 minutes on average. Once a miner solves the search problem, he broadcasts the newly created block to the rest of the network. In compensation for his effort, the winning miner receives a reward in bitcoin. A difficulty arises when two miners solve the search problem in the same moment and broadcast different new blocks to the network. In this case, there is a fork in the chain, and an uncertainty about which is the true history of bitcoin transactions. The rule in Bitcoin is that the true history is given by the longest chain.

The purpose of the proof-of-work is so that no one miner can dominate the network and be able to win the search competition more than 50% of the time. This makes it very unlikely that any individual could rewrite bitcoin history in their favour by unilaterally creating the longest chain. To win the search competition more than 50% of the time would require spending more than one billion USD on specialized computational hardware.

Mining is safer than signatures

Our first finding on the impact of quantum computers on Bitcoin was quite surprising to me. As the proof-of-work is a search problem, a quantum computer can use Grover’s algorithm to perform this search with quadratically fewer search queries than needed classically. This seems like it would lead to quantum dominance in Bitcoin mining.

However, the profits from mining Bitcoin have led to an arms race of ever more sophisticated mining hardware. Current specialized mining devices, called ASICs, can perform 14 trillion search queries per second.

About the author

Troy is a Principal Investigator at the Centre for Quantum Technologies and an Associate Professor at the Nanyang Technological University. He is one of the leaders of CQT’s computer science group. He holds a fellowship from Singapore’s National Research Foundation.

Assuming optimistically that the number of qubits in quantum computers will be able to double every nine months, quantum computers able to break the elliptic curve signature scheme of Bitcoin are still at least a decade away.

A testing ground

Still, it is never too early to start planning for the protocol succession needed with the rise of quantum computing technology. Several cryptocurrencies are already taking this into account and deploying a quantum safe signature scheme.

Miklos and I, together with our Australian-based coauthors Marco and Gavin have been consulting for one of these coins, called Hcash. We have been advising them on the various types of signature schemes that are believed to be quantum safe. Hcash has implemented two quantum safe signature schemes in a test coin, a lattice based signature scheme and a hash based signature scheme. These features are scheduled to be launched into the main Hcash coin in the second quarter of 2018.

I find this to be a very interesting testing ground. While the NIST decisions are still years away, cryptocurrencies are already testing post-quantum cryptography in practice with billions of dollars at stake.

Securing the future

The US National Institute of Standards and Technology (NIST) has begun a process to define ‘post-quantum’ standards for cryptography. In 2016, the agency launched a year-long call for proposals for cryptographic protocols resistant to attack by quantum computer.

Among the 69 submissions accepted into round one of the competition is ‘Mersenne-756839’, from CQT researchers Divesh Aggarwal, Miklos Santha and Anupam Prakash, with collaborator Antoine Joux at the UPMC University of Paris.

The team invented a new key encapsulation mechanism, which is convertible into an encryption system. The security of their proposal is based on arithmetic modulo Mersenne numbers – numbers of the form $p = 2^n - 1$, where n is a prime. NIST asked for a concrete choice of parameters that achieve a desired security. The team’s proposal uses the Mersenne prime $2^{756839} - 1$, where $n = 756839$. It will take three to five years of analysis before NIST reports its findings, and then a further two years for the agency to have ready draft standards. The agency does not expect to pick a winner, but to identify several algorithms as “good choices”.

The goal is to recommend approaches for quantum-resistant encryption early enough to protect data that needs long-term security, overlapping with the possible timeline for the arrival of large-scale quantum computers.

All of the first round proposals have been made public for review. Divesh or Antoine will also present the team’s proposal at a workshop NIST is organising in April 2018 in Florida. “This will be followed by an open discussion of the proposal’s merits and demerits,” says Divesh.
Two directions

The Loh group

Huanqian’s group aims to perform quantum state engineering at the single-molecule level, to explore new phenomena in quantum physics and chemistry. Cold molecules in well defined quantum states offer a clean, tunable way to simulate interesting materials like superconductors. Like quantum legos, they can also be used to assemble dream materials not necessarily found in nature but which could have highly desirable properties.

The Nicholson group

Travis’s group is interested in using Rydberg dressing of strontium in optical lattices to achieve squeezed states and quantum logic. Ultracold strontium in lattices is the basis for the world’s best atomic clocks. Meanwhile ultracold atoms in Rydberg states have realized high-fidelity quantum gates. The goal is to combine these two approaches to achieve a novel, high-fidelity quantum logic scheme.

In September 2017, Loh Huanqian and Travis Nicholson joined CQT as Principal Investigators. They are establishing two new research groups in atomic physics, building experiments from scratch in newly renovated lab space.

For both PIs, the first steps towards their scientific goals (see box Two directions) have been to equip their labs, with purchases from optical tables to office chairs, and to recruit postdocs and PhD students. Openings are listed at www.quantumlah.org/about/joinus.php.

Huanqian did her PhD at JILA in the United States, a joint institute of the National Institute of Standards and Technology (NIST) and University of Colorado Boulder. There she worked on measurements of the electron electric dipole moment in the group of Nobel laureate Eric Cornell. Travis did his PhD in the group of Jun Ye, a physicist at NIST. His PhD thesis demonstrated the most accurate atomic clock on Earth, which won’t gain or lose a second in 15 billion years.

Huanqian is a Singaporean and was previously a CQT research fellow. She worked in the group of Dzmitry Matsukevich on molecular ions, and then in the group of Martin Zwierlein at the Massachusetts Institute of Technology on ultracold molecules. These experiences have provided the inspiration for her present work as an NUS President’s Assistant Professor. “Right now quantum control of molecules is at a very exciting phase in the atomic physics community, and it means a lot to me to be able to pursue this big frontier back home,” she says. Huanqian has been awarded a Fellowship from the Singapore National Research Foundation.

Travis, an American also appointed as an Assistant Professor in the NUS Department of Physics, arrived after completing a postdoc at the MIT-Harvard Center for Ultracold Atoms. There he worked with Mikhail Lukin and Vladan Vuletic on slow light. Having experienced two physics frontier centres in the US, he found CQT offered a similarly attractive set up. “There’s only a handful of honest-to-goodness centres in the world that have several experimental groups doing this kind of physics and doing it well. It’s wonderful to be in such an intellectually vibrant environment,” he says.

New kids on the block

Loh Huanqian (left) and Travis Nicholson (right) are setting up new experiments in cold molecules and Rydberg atoms, respectively, in these labs 1 and 2. Both new Principal Investigators are recruiting postdocs and PhD students to join their groups.

These experiences have provided the inspiration for her present work as an NUS President’s Assistant Professor. “Right now quantum control of molecules is at a very exciting phase in the atomic physics community, and it means a lot to me to be able to pursue this big frontier back home,” she says. Huanqian has been awarded a Fellowship from the Singapore National Research Foundation.

Travis, an American also appointed as an Assistant Professor in the NUS Department of Physics, arrived after completing a postdoc at the MIT-Harvard Center for Ultracold Atoms. There he worked with Mikhail Lukin and Vladan Vuletic on slow light. Having experienced two physics frontier centres in the US, he found CQT offered a similarly attractive set up. “There’s only a handful of honest-to-goodness centres in the world that have several experimental groups doing this kind of physics and doing it well. It’s wonderful to be in such an intellectually vibrant environment,” he says.

Loh Huanqian (left) and Travis Nicholson (right) are setting up new experiments in cold molecules and Rydberg atoms, respectively, in these labs 1 and 2. Both new Principal Investigators are recruiting postdocs and PhD students to join their groups.
This article's author Koon Tong writes at the whiteboard during a group discussion with (from left to right) Li Xinhui, Han Yunguang, Cai Yu, Valerio Scarani and Lee Zhi Xian.

Goh Koon Tong describes his work in the CQT group of Valerio Scarani on the fingerprinting of quantum states – a technique that allows devices to be ‘self-testing’

A musky stench fills the air. The door is cordoned off and the carpet beneath is soaked with blood. You are in the middle of a crime scene. As a forensic investigator, your task is to identify the murderer. You scour the room for any possible clue. You pray that the culprit’s fingerprints can be found.

Fingerprints are unique to individuals and provide evidence of that person’s presence. It turns out that quantum states have fingerprints too. We don’t need these fingerprints to catch quantum criminals, but we think they can be helpful for quantum technologies. This is thanks to the idea of ‘self-testing’.

Self-testing boasts the possibility of checking the serviceability of devices without requiring any knowledge of their underlying mechanism. Different devices will use different quantum states. Looking under the hood of your device from a company you’re not sure you trust, or know that the device will self-destruct if you try to look inside.

In the group of Valerio Scarani at CQT, we have discovered how to measure fingerprints of new classes of quantum states, widening the possible range of self-testing devices.

Bell’s theorem

Let’s begin the story from its origin: Bell’s theorem. Just less than a century ago, Albert Einstein, Boris Podolsky and Nathan Rosen dubbed quantum theory “incomplete” because it does not fulfill the principle of local realism.

Locality refers to the belief that physical objects that are spatially separated do not interact instantaneously. Realism refers to the belief that values of physical quantities are predetermined prior to the act of measurement on them. The description from quantum physics of particles in a shared, ‘entangled’ state was not compatible with these seemingly common-sense beliefs. However, discrediting a theory based on personal beliefs rather than experimentation is not scientific.

Three decades later, the physicist John Bell proposed a way to make an experimental test of local realism. Bell considered measurements on two spatially separated systems. He showed that quantum theory predicts a value for some combination of results on entangled systems that exceeds the maximum value allowed by the local realism principle. Hence, local realism is falsifiable by what is now known as a Bell test. The mathematical relation that bounds the value of an observable imposed by local realism is known as Bell’s inequality.

The violation of Bell’s inequality was first demonstrated in the 1980s, but it was only two years ago that experiments truly “ loophole-free” confirmed the results. This dealt a final blow to the remnants of the local-realistic loyalists. It sounds like the perfect ending – except this is not the end of our story, instead it is the beginning.

Black box devices

We’re at the dawn of commercial quantum technologies. It is only a matter of time until we can buy a range of quantum devices off the shelf, from communication tools to measurement devices and computers. When a customer buys a quantum device, how do they know if it is doing what it is supposed to do? How do we know if a quantum computer ischurning out the correct solution? How do we know if a quantum cryptographic device produces secure encryption keys?

Self-testing

If one digs deep into the literature, the origin of self-testing can be traced as far back as 1987. That year, Boris Tsirelson proved a result that was a phenomenon that is exclusive to the singlet state. I’m part of a team of researchers led by Valerio that has discovered how to check the fingerprints of many other quantum states.

The team’s initial effort revealed the fingerprints of many bipartite and tripartite quantum states. Notably, we collaborated with Miguel Navascués, then at the University of Bristol, to produce a blueprint for the self-
Above Earth, there’s a shoebox-sized satellite called Galassia making 90-minute orbits. Inside that satellite runs a quantum light source built at CQT. That first step towards technology for a global quantum network, taken in 2015, should soon be followed by another: the launch in 2018 of CQT’s SpooQySat. The group of CQT Principal Investigator Alexander Ling has pioneered the development of small, rugged and low-power sources of entangled light particles for quantum communication via satellites in orbit. The work of the multidisciplinary team was photographed for this story.

Made at CQT: quantum satellites

See behind the scenes as Alexander Ling’s group prepares to launch a second quantum Cubesat

About the author

Koon-Tong is a final year PhD student at the Centre for Quantum Technologies under the supervision of Principal Investigator Valerio Scarani. His research area revolves around correlations that can only be obtained from quantum systems. Image: Measuring the fingerprint of quantum states, captured here in an artist’s impression, could help to guard against errors and defective devices in quantum technologies.

Recent works address such problems and offer partial solutions.

Currently in CQT, Valerio’s team is coming together with the experimental team led by Alexander Ling to check the fingerprints of entangled photon states created in the lab. Future quantum devices may be certified thanks to today’s efforts to push the boundary of scientific knowledge.

PhD students Aitor Vilar Zafra (left) and Tang Zhongkan Kamiyuki (centre), with Research Fellow Rakhitha Chandrasekara (right) assemble a quantum light source for space. Aitor has a background in communications engineering, Zhongkan in physics and Rakhitha in electrical engineering.

A step towards making self-testing practical is to show that it’s robust against the noise intrinsic to experiments. Robust self-testing gives meaningful and non-trivial bounds on the ‘closeness’ between the measured states and the ideal quantum state amidst small experimental imperfections.

The good news is that all known self-testing proofs can be shown to be robust. However, there are still obstacles. The most glaring problem is that self-testing relies on observed statistics, which will deviate from the ideal. Moreover, for self-testing schemes based on Bell inequality violations, due to statistical fluctuations, the estimated violations may even exceed its quantum theoretical maximum, rendering any existing theoretical analysis invalid.

A first step towards making self-testing practical is to show that it’s robust against the noise intrinsic to experiments. Robust self-testing gives meaningful and non-trivial bounds on the ‘closeness’ between the measured states and the ideal quantum state amidst small experimental imperfections.

The good news is that all known self-testing proofs can be shown to be robust. However, there are still obstacles. The most glaring problem is that self-testing relies on observed statistics, which will deviate from the ideal. Moreover, for self-testing schemes based on Bell inequality violations, due to statistical fluctuations, the estimated violations may even exceed its quantum theoretical maximum, rendering any existing theoretical analysis invalid.

A step towards making self-testing practical is to show that it’s robust against the noise intrinsic to experiments. Robust self-testing gives meaningful and non-trivial bounds on the ‘closeness’ between the measured states and the ideal quantum state amidst small experimental imperfections.

The good news is that all known self-testing proofs can be shown to be robust. However, there are still obstacles. The most glaring problem is that self-testing relies on observed statistics, which will deviate from the ideal. Moreover, for self-testing schemes based on Bell inequality violations, due to statistical fluctuations, the estimated violations may even exceed its quantum theoretical maximum, rendering any existing theoretical analysis invalid.
The team designed the small photon-entangling quantum system (SPEQS) to fly inside a Cubesat, a standard form of nanosatellite that is relatively inexpensive to build and launch. Entangled photons allow secure communication and, in the long term, can network quantum computers. In this device, however, light stays on board. The creation and measurement of entangled photon pairs all happens within the metal box, controlled by electronics on a printed circuit board.

The components that create the quantum light are protected within a casing machined from titanium. The team are careful to handle the device in a clean environment, to avoid dirt or grease that might affect its operation in space.

Inside SPEQS is a complex array of optical devices and alignment mechanisms. Entangled photons are created through a process known as ‘spontaneous parametric-down conversion’, which happens as laser light shining in from the bottom right of the device passes through the visible blocks of crystal. This material is beta-barium borate (BBO). A photon passing through BBO sometimes gets turned into two photons of lower energy. The succession of crystals ensures such pairs emerge entangled. In SPEQS, entangled photons are directed for measurement in the two branches of the device to the upper left. The laser beam and components must be finely aligned for this to work. The alignment must also survive vibrations during a rocket launch and temperature changes as the satellite swings through hot sun and cold shadow. Close-ups show how the CQT team tackled the challenge.

Wheels notched with 72 ridges rotate a prism that moves the direction of the beam, to aim it squarely into the detector. The wheels, like other titanium components in SPEQs, were machined to CQT’s design by companies in Singapore that support the aerospace industry.

Sitting to the left of the wheels, at the end of the red wire, are liquid crystal polarisation rotators that orient the photons before they go into the detector. The team have invented a control scheme based on tracking the capacitance of these devices that avoids the temperature sensitivity of their usual settings.

Five interlocking flexure stages nested in a compact footprint give precise tuning of the position of the BBO crystals. These are adjusted using a screw with a thread too fine to see with the naked human eye. Each steel screw’s tip rests on a hard sapphire plate.

The team are taking data on the performance of SPEQS in the lab — measuring the rate of entangled pair production and quality of the entanglement — to benchmark against the performance of the device when it is in orbit. Compared to the first device launched on Galassia, this SPEQS should be brighter and show entanglement. These stages
Communications privacy in the quantum era

Alexander Lang

For The Straits Times

China's satellite Micius is beaming light from space to ground in Singapore. This year, Micius is to be tested by the National Institute of Standards and Technology Singapore, which is led by a professor at the National University of Singapore.

Meanwhile, CQT has built in-house the 4kg SpooQySat, held in the picture by satellite expert and CQT Senior Research Fellow Robert Bedington. Cubesats are built from units measuring 10cm along each edge. SpooQySat is made of three such cubes. The SPOEs device slots vertically in the body, with the power supply and communications hardware housed in the top unit. The satellite will have a skin of solar panels.

Providing the satellite makes it through rigorous pre-launch testing, SpooQySat should lift off with the Japanese Space Agency (JAXA) in the second half of 2018. It will join the cargo in a rocket taking supplies to the ISS. SpooQySat will be delivered to the ISS too.

When it is time for the satellite to be deployed, an ISS astronaut will pack SpooQySat into a spring-loaded ejector, like that pictured. This will be transferred through an air lock in the Japanese Experiment Module to the outside of the space station. A robotic arm developed by JAXA will pick up the package, aim and fire - shooting the satellite into its predetermined orbit. All being well, SpooQySat will turn on and send back data for it to 12 months before it descends into Earth's atmosphere and burns up.

There are projects in other parts of the world to build quantum satellites too. Alexander wrote about the bigger, picture for The Straits Times in June 2017, after publication of the first results from the Chinese satellite Micius, a 600kg satellite launched in 2016. The Micius team followed the first distribution of entangled photons from space to ground with an encrypted video call between China and Europe that used Micius as a trusted relay to share quantum keys. Canada is funding development of a quantum satellite called QESYSat and Europe has numerous proposals to do quantum key distribution from spacecraft in low Earth and geostationary orbits.

Meanwhile, CQT has built in-house the 4kg SpooQySat, held in the picture by satellite expert and CQT Senior Research Fellow Robert Bedington. Cubesats are built from units measuring 10cm along each edge. SpooQySat is made of three such cubes. The SPOEs device slots vertically in the body, with the power supply and communications hardware housed in the top unit. The satellite will have a skin of solar panels.

Providing the satellite makes it through rigorous pre-launch testing, SpooQySat should lift off with the Japanese Space Agency (JAXA) in the second half of 2018. It will join the cargo in a rocket taking supplies to the ISS. SpooQySat will be delivered to the ISS too.

When it is time for the satellite to be deployed, an ISS astronaut will pack SpooQySat into a spring-loaded ejector, like that pictured. This will be transferred through an air lock in the Japanese Experiment Module to the outside of the space station. A robotic arm developed by JAXA will pick up the package, aim and fire - shooting the satellite into its predetermined orbit. All being well, SpooQySat will turn on and send back data for it to 12 months before it descends into Earth's atmosphere and burns up.

There are projects in other parts of the world to build quantum satellites too. Alexander wrote about the bigger, picture for The Straits Times in June 2017, after publication of the first results from the Chinese satellite Micius, a 600kg satellite launched in 2016. The Micius team followed the first distribution of entangled photons from space to ground with an encrypted video call between China and Europe that used Micius as a trusted relay to share quantum keys. Canada is funding development of a quantum satellite called QESYSat and Europe has numerous proposals to do quantum key distribution from spacecraft in low Earth and geostationary orbits.

Meanwhile, CQT has built in-house the 4kg SpooQySat, held in the picture by satellite expert and CQT Senior Research Fellow Robert Bedington. Cubesats are built from units measuring 10cm along each edge. SpooQySat is made of three such cubes. The SPOEs device slots vertically in the body, with the power supply and communications hardware housed in the top unit. The satellite will have a skin of solar panels.

Providing the satellite makes it through rigorous pre-launch testing, SpooQySat should lift off with the Japanese Space Agency (JAXA) in the second half of 2018. It will join the cargo in a rocket taking supplies to the ISS. SpooQySat will be delivered to the ISS too.

When it is time for the satellite to be deployed, an ISS astronaut will pack SpooQySat into a spring-loaded ejector, like that pictured. This will be transferred through an air lock in the Japanese Experiment Module to the outside of the space station. A robotic arm developed by JAXA will pick up the package, aim and fire - shooting the satellite into its predetermined orbit. All being well, SpooQySat will turn on and send back data for it to 12 months before it descends into Earth's atmosphere and burns up.

There are projects in other parts of the world to build quantum satellites too. Alexander wrote about the bigger, picture for The Straits Times in June 2017, after publication of the first results from the Chinese satellite Micius, a 600kg satellite launched in 2016. The Micius team followed the first distribution of entangled photons from space to ground with an encrypted video call between China and Europe that used Micius as a trusted relay to share quantum keys. Canada is funding development of a quantum satellite called QESYSat and Europe has numerous proposals to do quantum key distribution from spacecraft in low Earth and geostationary orbits.

Meanwhile, CQT has built in-house the 4kg SpooQySat, held in the picture by satellite expert and CQT Senior Research Fellow Robert Bedington. Cubesats are built from units measuring 10cm along each edge. SpooQySat is made of three such cubes. The SPOEs device slots vertically in the body, with the power supply and communications hardware housed in the top unit. The satellite will have a skin of solar panels.

Providing the satellite makes it through rigorous pre-launch testing, SpooQySat should lift off with the Japanese Space Agency (JAXA) in the second half of 2018. It will join the cargo in a rocket taking supplies to the ISS. SpooQySat will be delivered to the ISS too.

When it is time for the satellite to be deployed, an ISS astronaut will pack SpooQySat into a spring-loaded ejector, like that pictured. This will be transferred through an air lock in the Japanese Experiment Module to the outside of the space station. A robotic arm developed by JAXA will pick up the package, aim and fire - shooting the satellite into its predetermined orbit. All being well, SpooQySat will turn on and send back data for it to 12 months before it descends into Earth's atmosphere and burns up.

There are projects in other parts of the world to build quantum satellites too. Alexander wrote about the bigger, picture for The Straits Times in June 2017, after publication of the first results from the Chinese satellite Micius, a 600kg satellite launched in 2016. The Micius team followed the first distribution of entangled photons from space to ground with an encrypted video call between China and Europe that used Micius as a trusted relay to share quantum keys. Canada is funding development of a quantum satellite called QESYSat and Europe has numerous proposals to do quantum key distribution from spacecraft in low Earth and geostationary orbits.

Meanwhile, CQT has built in-house the 4kg SpooQySat, held in the picture by satellite expert and CQT Senior Research Fellow Robert Bedington. Cubesats are built from units measuring 10cm along each edge. SpooQySat is made of three such cubes. The SPOEs device slots vertically in the body, with the power supply and communications hardware housed in the top unit. The satellite will have a skin of solar panels.

Providing the satellite makes it through rigorous pre-launch testing, SpooQySat should lift off with the Japanese Space Agency (JAXA) in the second half of 2018. It will join the cargo in a rocket taking supplies to the ISS. SpooQySat will be delivered to the ISS too.

When it is time for the satellite to be deployed, an ISS astronaut will pack SpooQySat into a spring-loaded ejector, like that pictured. This will be transferred through an air lock in the Japanese Experiment Module to the outside of the space station. A robotic arm developed by JAXA will pick up the package, aim and fire - shooting the satellite into its predetermined orbit. All being well, SpooQySat will turn on and send back data for it to 12 months before it descends into Earth's atmosphere and burns up.
Helping youth make a quantum leap

CQT’s summer camp for junior college students is popular enough to have a waiting list. Jamie Sikora introduces Generation Q Camp

Four years ago, I sat down with CQT’s outreach team with the intention of creating a summer camp for young students. We wanted to offer a place for pre-university students to see the new developments in the exciting world of quantum.

The final years of school are a pivotal time for young students. Soon, they will have to start making decisions concerning the direction they would like to steer their careers. It is an invaluable resource for these students being able to talk to people who already went down the road they are thinking of taking.

What’s more, it looks like quantum technologies could be an exciting route to pick. In 2017, China demonstrated a quantum communications satellite and Google said it was close to having a quantum computer that could do something beyond the reach of all today’s machines. Here in Singapore, CQT has been funded since 2007 to do research in quantum technologies and is now building partnerships with companies like Singtel.

When designing the camp, we had ambitious goals in mind. The first was to educate and inspire young minds eager to learn cutting edge science. There are many misconceptions out there about exactly what ‘quantum’ is all about, so what better than to learn straight from the experts themselves! We wanted to open our doors to show what is going on in our building.

Secondly, we wanted to give back to the community that allows for our centre to exist. Some people think that academics are social hermits, hoarding their ideas. They may have preconceptions about physicists from watching the socially-awkward characters on the sitcom The Big Bang Theory. This would be a chance to show that the opposite is true, that we enjoy sharing and discussing ideas.

Our third goal was to make sure that the camp was super fun for everyone involved. We decided to have no assignments or examinations, and made camp t-shirts for everyone!

In 2015, Generation Q Camp was a three-day workshop. We had thirteen participants that year. The students found it engaging – one said the “whole camp is simply amazing and enriching” – so we immediately made plans to run the summer camp again in June 2016.

Teaching quantum physics

Singapore’s schools do famously well in teaching students maths and science – the country ranks first in the world in standardised tests by the intergovernmental Organisation for Economic Co-operation and Development. Still, we wondered if it would be possible to teach our advanced topics in maths, physics, and computer science to students aged around 17–19, in their Junior College (JC) years.

By June 2017, we had a waiting list for a five-day camp with over 40 students taking part and more than 20 volunteers from CQT running the event. Our team of graduate students, postdocs, professors and administrative staff helped to teach and take care of the students during their time at CQT.

The camp mixed hand-written lectures, hands-on experiments, and visits to see laboratories performing modern experiments. The students got a glimpse of what world-class physicists get to do all day. When asked to describe the camp in a single word, some responses we received were: “Eye-opening”, “Fun!”, “Boomastic”, “Enriching”, “Enlightening”, “Life-changing”, and a personal favourite, “SUPERFUNANDNERDY”.

When we asked the students to describe the camp in a single word, responses included SUPERFUNANDNERDY

The human factor

It was particularly nice to see the students making friends from other schools. There are quite a few Junior Colleges in Singapore. To give a fair chance to students from all schools to take part, we set a limit on how many students from each school we accepted. By the end of our most recent

In 2017, 45 students from 14 different schools registered to take part in Generation Q Camp. They were taught by CQT researchers and PhD students.

In 2016, we had a volunteer from the Ministry of Education come to give us some advice. Yang Yarong is a Curriculum Resource Development Officer in physics. She attended the lectures and gave us really helpful feedback on how to make sure the jump from JC to the camp was seamless, with tips on how to improve the structure of the course. The biggest challenge was coordinating with all the volunteers to make a unified curriculum.

Four years ago, I sat down with CQT’s outreach team with the intention of creating a summer camp for young students. We wanted to offer a place for pre-university students to see the new developments in the exciting world of quantum.

The final years of school are a pivotal time for young students. Soon, they will have to start making decisions concerning the direction they would like to steer their careers. It is an invaluable resource for these students being able to talk to people who already went down the road they are thinking of taking.

What’s more, it looks like quantum technologies could be an exciting route to pick. In 2017, China demonstrated a quantum communications satellite and Google said it was close to having a quantum computer that could do something beyond the reach of all today’s machines. Here in Singapore, CQT has been funded since 2007 to do research in quantum technologies and is now building partnerships with companies like Singtel.

When designing the camp, we had ambitious goals in mind. The first was to educate and inspire young minds eager to learn cutting edge science. There are many misconceptions out there about exactly what ‘quantum’ is all about, so what better than to learn straight from the experts themselves! We wanted to open our doors to show what is going on in our building.

Secondly, we wanted to give back to the community that allows for our centre to exist. Some people think that academics are social hermits, hoarding their ideas. They may have preconceptions about physicists from watching the socially-awkward characters on the sitcom The Big Bang Theory. This would be a chance to show that the opposite is true, that we enjoy sharing and discussing ideas.

Our third goal was to make sure that the camp was super fun for everyone involved. We decided to have no assignments or examinations, and made camp t-shirts for everyone!

In 2015, Generation Q Camp was a three-day workshop. We had thirteen participants that year. The students found it engaging – one said the “whole camp is simply amazing and enriching” – so we immediately made plans to run the summer camp again in June 2016.

Teaching quantum physics

Singapore’s schools do famously well in teaching students maths and science – the country ranks first in the world in standardised tests by the intergovernmental Organisation for Economic Co-operation and Development. Still, we wondered if it would be possible to teach our advanced topics in maths, physics, and computer science to students aged around 17–19, in their Junior College (JC) years.

By June 2017, we had a waiting list for a five-day camp with over 40 students taking part and more than 20 volunteers from CQT running the event. Our team of graduate students, postdocs, professors and administrative staff helped to teach and take care of the students during their time at CQT.

The camp mixed hand-written lectures, hands-on experiments, and visits to see laboratories performing modern experiments. The students got a glimpse of what world-class physicists get to do all day. When asked to describe the camp in a single word, some responses we received were: “Eye-opening”, “Fun!”, “Boomastic”, “Enriching”, “Enlightening”, “Life-changing”, and a personal favourite, “SUPERFUNANDNERDY”.

The human factor

It was particularly nice to see the students making friends from other schools. There are quite a few Junior Colleges in Singapore. To give a fair chance to students from all schools to take part, we set a limit on how many students from each school we accepted. By the end of our most recent

In 2017, 45 students from 14 different schools registered to take part in Generation Q Camp. They were taught by CQT researchers and PhD students.
Jamie may have left CQT, but Generation Q Camp is here to stay.

I've had the opportunity to work on Q Camp for two years as a co-organiser. It's a bit of a cliché, but I've noticed for myself that to explain something to someone, I have to understand the material much better. I was studying for my PhD qualifying exam when I first lectured for the students in 2016 so the teaching experience was particularly helpful.

I gave a talk about ‘How (not) to build a quantum computer’ – covering the basics of what a computer is and what makes the quantum part. The ‘not’ was there because different people are trying different ways of building quantum computers, and we still don't really know which will work best.

A week before my first talk, IBM put a five-qubit quantum computer on their cloud. A few weeks before this year’s camp, IBM put out a 16-qubit quantum computer – so I’m just waiting for next year! It would be interesting to have the students get hands-on with the IBM machine, but it will take some thinking because quantum algorithms is one of the hardest topics we teach.

The camp has really improved over the years from us learning how to fit lectures and activities together and by hearing the students’ feedback. It's clear the students are engaged from the amount of questions they ask and how difficult those questions can be.

As the responsibility for the camp shifts to new hands, with me and the other members of the PhD committee taking over, we hope to continue the curriculum development. When Q Camp returns in 2018, I want to see more practical demonstrations and experiments for the students. Also, our liquid nitrogen cookbook needs new recipes!

Hermanni is a graduate student at CQT, studying for a PhD in theoretical quantum physics.

About the author
Jamie was a postdoc with the Centre for Quantum Technologies from 2014 to 2017. He received his PhD in quantum information at the University of Waterloo, Ontario, Canada, then spent two years as a postdoc at the Université Paris Diderot, France, before joining CQT. In 2017, he moved back to Ontario for a postdoc position at the Perimeter Institute for Theoretical Physics.

I am excited to see how the camp evolves and I’m confident it will continue to be a great success. I wish every success to the Q Camp students too. I’m sure I’ll see some of them making great contributions in science and technology in the future.

Looking to the future
By Hermanni Heimonen

Jamie may have left CQT, but Generation Q Camp is here to stay.

I’ve had the opportunity to work on Q Camp for two years as a co-organiser. It’s a bit of a cliché, but I’ve noticed for myself that to explain something to someone, I have to understand the material much better. I was studying for my PhD qualifying exam when I first lectured for the students in 2016 so the teaching experience was particularly helpful.

I gave a talk about ‘How (not) to build a quantum computer’ – covering the basics of what a computer is and what makes the quantum part. The ‘not’ was there because different people are trying different ways of building quantum computers, and we still don’t really know which will work best.

A week before my first talk, IBM put a five-qubit quantum computer on their cloud. A few weeks before this year’s camp, IBM put out a 16-qubit quantum computer – so I’m just waiting for next year! It would be interesting to have the students get hands-on with the IBM machine, but it will take some thinking because quantum algorithms is one of the hardest topics we teach.

The camp has really improved over the years from us learning how to fit lectures and activities together and by hearing the students’ feedback. It’s clear the students are engaged from the amount of questions they ask and how difficult those questions can be.

As the responsibility for the camp shifts to new hands, with me and the other members of the PhD committee taking over, we hope to continue the curriculum development. When Q Camp returns in 2018, I want to see more practical demonstrations and experiments for the students. Also, our liquid nitrogen cookbook needs new recipes!

Hermanni is a graduate student at CQT, studying for a PhD in theoretical quantum physics.

A demonstration of a ‘superconducting quantum interference device’ required liquid nitrogen. We used the leftover liquid, which is colder than -196°C, to make ice cream.
The Centre for Quantum Technologies brought experts and devices to the GovWare conference, 19–21 September 2017. Held during Singapore International Cyber Week, this event is aimed at “technology leaders, industry professionals, policymakers and innovators”.

Delegates at GovWare came from both business and government. Thanks to the Centre’s presence in the exhibition hall, these cybersecurity professionals and government end-users had the opportunity to learn about the risks and opportunities of the quantum era.

“GovWare was the right platform to share the relevance of CQT research to the cybersecurity industry. We communicated the point about quantum computing posing threats to RSA and cybersecurity and shared about quantum-safe solutions, which were not widely known even among industry professionals. Hopefully this awareness will help the community better prepare for advances in quantum technologies,” says Lum Chune Yang, Head of Strategic Development for CQT’s industry relations team.

The Centre’s research in this area spans the study of the quantum security of current encryption schemes, the proposal of new protocols (pp.36–39) and the development of hardware.

Representatives from some 60 different organisations talked to CQT staff at the event or stopped by the Centre’s booth. The CQT industry team’s objectives are to inform, engage and create with external parties. While exhibiting contributes to informing industry about quantum technologies, the Centre offers training and consulting for organisations looking for deeper learning. There are also possibilities for research collaborations.

One of the displays at CQT’s GovWare booth highlighted the Centre’s collaboration with Singtel, Asia’s leading communications group. CQT is working with Singtel in the NUS–Singtel Cyber Security R&D Lab to develop quantum communication technology for Singapore’s fibre networks. We showcased a device built in-house that will measure how quantum signals are affected by the environment as they travel through fibre (see box On the exhibition floor p.56).

Other devices on display included:

• A compact source of entangled photon-pairs, with output coupled to fibres. Such photons can be used for key distribution and timing synchronization
• A satellite designed to test technology for quantum key distributions over cross-continental distances (pp.45–49)
• A fast quantum random number generator
• An ion trap, ion-trap chip and superconducting circuit which could contain quantum bits (qubits) for quantum computing

Check CQT’s website for news of events where the team will be exhibiting in 2018 and beyond.
Be informed

CQT offers workshops and seminars to inform organisations about quantum technologies. The Centre’s industry team and researchers have delivered three such workshops to companies and government agencies so far, with more to come.

These workshops can help companies understand the potential impact of quantum technologies on their businesses or assist government agencies in planning and preparing for technology changes on the horizon. Topics could include the basics of quantum information processing, quantum computing technology and its applications, quantum-safe communication and quantum sensing, just to name a few.

These workshops can also be customised to meet specific interests of the organisations, and designed at an appropriate technical level to suit the requirements and objectives of the workshop. Hands-on demos, lab tours and brainstorming sessions can also be incorporated to augment the workshops to give a practical feel to the participants’ experience.

In 2018, for example, the Centre plans to deliver a three-hour workshop at the Internet of Things (IoT) Asia conference, happening 22–23 March at Singapore EXPO. The workshop would be for up to 30 conference delegates and would cover basic ideas of quantum information processing and its implications for cryptography, as well as real, accessible and practical applications of quantum technologies in industry, including secure key distribution, randomness generation, sensing and atomic clocks.

For organisations that would like to address a clear and specific topic, arrangements can also be made for CQT researchers with relevant expertise to consult with the organisations on a project basis over a period of time.

CQT’s strategy to realise the promise of quantum technologies has three themes: to inform, to engage and to create. Companies already informed about quantum technologies are invited to engage the Centre or its spin-offs for discussion on collaboration opportunities. Quantum technologies is an emerging field, with many opportunities for innovation. Through interactions with research organisations, government and industry, we hope to create intellectual property, products and services, and new markets.

Contact us at industry@quantumlah.org for information or with enquiries.

On the exhibition floor

CQT’s Janet Lim was one of the researchers at the Centre’s stand at GovWare. In this Q&A, she describes the experience

What are you working on at CQT?
I’m a research assistant in Professor Christian Kurtsiefer’s group, working in the NUS–Singtel Cyber Security R&D Lab. We are working towards implementation of quantum key distribution (QKD) on the Singtel fibre network, to offer a new level of communication security. QKD at telecom wavelengths (1260nm to 1625nm) has the potential for fast deployment on the current infrastructure. Currently, my team and I are working on the characterisation of the Singtel fibres.

What was your role at the GovWare exhibition?
As an exhibitor, I mainly spent time explaining to visitors what my team is working on. We had transported a polarimeter setup to the exhibition.

What kind of questions were you asked?
The most common was “What is quantum physics and how is it incorporated in cyber security?”. The most surprising was “Is this project about increasing the efficiency and speed of Singtel’s optical fibres?”. Our work is about security rather than speed.

What type of job do you hope to do in the future?
Initially I was thinking of going into teaching, but my experience in this Singtel project has opened my worldview. It’s exciting to see the potential synergy that exists between quantum research and industry, which could bring tangible benefit to the economy and society. I am leaning towards a job in the general direction of quantum physics, exploring ways to contribute outside of the lab.

CQT’s Janet Lim (right) pictured at the GovWare exhibition with Amelia Tan Peiyu, Project Principal Investigator, Singtel
A PhD can be a pathway to becoming a scientist. It’s a period of mentorship and training in a research group, during which a student deepens their knowledge, grows independence and works towards a novel piece of research.

The skills acquired during this process can be applied in careers outside science, too. CQT PhD students are good at problem-solving, adept with numbers and motivated self-learners. Depending on their projects, students may also have become good at coding, electronics or mechanical design.

In past annual reports, we have followed students into new jobs at Apple, DBS Bank and Mindset in Singapore and postdoc positions around the world. This year, we find out what two of the Centre’s most recent graduates, Debashis De Munshi and Aarthi Sundaram, are doing now.

Aarthi (pictured above) completed her PhD in computer science at CQT in 2017, supervised by Miklos Santha. Her research involved work on quantum algorithms and the mathematical complexity of problems. She is now a Hartree Postdoctoral Fellow at the Joint Center for Quantum Information and Computer Science (QuICS) in the United States. The centre is a partnership between the University of Maryland and the National Institute of Standards and Technology. QuICS offers two-year Hartree Fellowships to exceptional candidates interested in quantum information science and quantum computing.

Debashis did his PhD in the experimental laboratory of CQT’s Manas Mukerjee, building and running experiments on trapped barium ions. He then worked briefly as a postdoc in the Centre before accepting a job with KLA Tencor, a multinational company that develops inspection and metrology technologies for the semiconductor and nanoelectronics industries. His leaning towards industry was apparent even earlier, as he filed a patent application and developed ideas for businesses during his PhD. Debashis joined KLA Tencor’s multinational company that develops inspection and metrology technologies for the semiconductor and nanoelectronics industries. His leaning towards industry was apparent even earlier, as he filed a patent application and developed ideas for businesses during his PhD. Debashis joined KLA Tencor’s Singapore facility in September 2017 as Systems Engineer (manufacturing). He is pictured (right) dressed for work in a Class 100 cleanroom.

Debashis De Munshi

What does your job involve?

The machines we build are extremely complex. Think of a lab at CQT: a whole room of equipment and electronics carefully tuned by researchers. Now imagine taking everything, bundling it into a box of size 4m×4m×4m, and requiring that it work at the push of a button. That’s what these machines do. Manufacturing these systems is not an automated process. It requires manual work, almost like the way that we as PhD students built our systems. My job is to troubleshoot issues during manufacturing and to suggest and perform design changes.

Aarthi Sundaram

How did you choose where to do your postdoc?

A key factor was the portfolio of research. Clearly, it is helpful to join a place that has research interests aligned with your own. Additionally, it’s good if there is a good variety of research being conducted within a dynamic group. That gives you the chance, as an early stage researcher, to be exposed to new ideas and techniques and to expand your own interest profile. QuICS seems to tick both those boxes for me.

How are you finding it so far?

I’m excited about exploring a new part of the world both personally and professionally. I am exploring certain areas of research which I have not worked in previously. An added bonus is Washington DC being a cultural hub in the US along with its free museums and a lot of activities on offer.

What do you miss from Singapore?

Shorter flights to visit family, the great variety of delicious tropical fruit juices and longer daylight hours during the winter months! On a more serious note, I miss the people I had a chance to work with previously. An added bonus is Washington DC being a cultural hub in the US along with its free museums and a lot of activities on offer.

What is the most interesting thing you’ve learnt?

I was interested to embrace the challenges of commercial technological developments.

What skills or knowledge from your training in science are relevant to this role?

As a scientist, one learns how to solve problems. That’s what I did during my PhD and that is what I am doing now. It is surprising how easily the concepts of problem solving can be transferred from one field of work to another.

How are you finding the job?

It is challenging not only technically, but also in terms of operations management. As a manufacturing systems engineer, I work with cross-functional teams having widely different technical expertise and operational objectives.

What are your plans for the future?

As of now, my long term plan is to remain in academia and research. As a rapidly growing research area, the opportunities in quantum information science seem to be increasing too. So, I am keeping my options open on wherever opportunities may open up.

As a scientist, one learns how to solve problems. That’s what I did during my PhD and that is what I am doing now. It is surprising how easily the concepts of problem solving can be transferred from one field of work to another.

How are you finding the job?

It is challenging not only technically, but also in terms of operations management. As a manufacturing systems engineer, I work with cross-functional teams having widely different technical expertise and operational objectives.

What skills or knowledge from your training in science are relevant to this role?

As a scientist, one learns how to solve problems. That’s what I did during my PhD and that is what I am doing now. It is surprising how easily the concepts of problem solving can be transferred from one field of work to another.

How are you finding the job?

It is challenging not only technically, but also in terms of operations management. As a manufacturing systems engineer, I work with cross-functional teams having widely different technical expertise and operational objectives.

What are your plans for the future?

As of now, my long term plan is to remain in academia and research. As a rapidly growing research area, the opportunities in quantum information science seem to be increasing too. So, I am keeping my options open on wherever opportunities may open up.
Debashis De Munshi
Precision Measurements to Explore Underlying Geometries and Interactions in a Trapped Ba+ Ion
Supervised by Manas Mukherjee
CQT PhD Programme

Rakhitha Chandrasekara
A Cubesat Compatible Electronics Platform For Miniaturized Single Photon Pair Sources
Supervised by Alexander Ling
CQT PhD Programme

Lam Mun Choon, Mark
Molecular Spectroscopy of Ultracold 6Li40K Molecules
Supervised by Kai Dieckmann
CQT PhD Programme

Christian Gross
Atomic 2S1/2 to 3P3/2 Transition for Production and Investigation of A Fermionic Lithium Quantum Gas
Supervised by Kai Dieckmann
CQT PhD Programme

Sambit Bikas Pal
Molecular Spectroscopy of Ultracold 6Li133Na Molecules: Towards Stripping Transfer to Absolute Ground State
Supervised by Kai Dieckmann
CQT PhD Programme

Corsin Pfister
Decoherence Estimation in Quantum Theory and Beyond
Supervised by Stéphane Wehner
CQT PhD Programme

Supartha Podder
Exploring Different Models of Query Complexity and Communication Complecity
Supervised by Norbert Blum
CQT PhD Programme

Swarup Das
Application of Precision Measurements with Trapped Ion and Development of a Planar Surface Ion Trap Setup
Supervised by Manas Mukherjee
CQT PhD Programme

Tarun Dutta
Precision Measurement to Study Strongly Correlated Systems – From a Single Feshbach to Phonons in an Ion Chain
Supervised by Manas Mukherjee
CQT PhD Programme

Wei Nie
Gauge Fields and Geometric Phases in Periodic Systems
Supervised by Kai Dieckmann
CQT PhD Programme

Wu Xingyao
Self-Testing: Walking on the Boundary of the Quantum Set
Supervised by Valerio Scarani
CQT PhD Programme

Congratulations to
our graduates of 2017

Earn a PhD at CQT
We welcome students from all over the world to do research in quantum technologies

PhD programme
CQT offers high-quality education and supports graduate students in making original contributions to research. We accept applications throughout the year from motivated students who want to step into the dynamic field of quantum technologies. We have opportunities in experimental and theoretical physics and in computer science.

In 2017, there were more than 70 students supervised at CQT. The CQT PhD programme provides a generous scholarship plus allowances for travel and other expenses. Doctoral degrees are awarded by the National University of Singapore, consistently ranked among the leading universities in the world. CQT Principal Investigators (PIs) also accept students funded by other sources. Find more information on the student programme and a description of how to apply at www.quantumlah.org.

Internships
CQT supports internships for students near the end of an undergraduate degree or during masters studies who are contemplating a career in research. Applications should be made directly to the PI with whom the student would like to work. A successful intern making a follow up application to the PhD@CQT programme will be given high priority.
EVENTS

Conferences & Workshops in 2017

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
<th>Venue</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 – 12 January</td>
<td>International Frontiers of Quantum and Complexity Science</td>
<td>Hotel Fort Canning, Singapore</td>
</tr>
<tr>
<td>15 – 17 February</td>
<td>From a single particle to many-body quantum physics and its application</td>
<td>Park Alexandra Hotel, Singapore</td>
</tr>
<tr>
<td>18 March</td>
<td>Mini-Workshop on Post-Quantum Cryptanalysis</td>
<td>SPMS, NTU, Singapore</td>
</tr>
<tr>
<td>4 – 8 September</td>
<td>17th Asian Quantum Information Science Conference</td>
<td>Shaw Foundation Alumni House, NUS, Singapore</td>
</tr>
<tr>
<td>7 – 8 December</td>
<td>CQT10 Conference</td>
<td>NUSS Guild House, NUS, Singapore</td>
</tr>
</tbody>
</table>
CQT’S 10TH ANNIVERSARY

In December 2017, CQT celebrated its tenth birthday. We marked the occasion with special scientific events.

Over 7–8 December, we hosted a two-day conference that brought together members of CQT, some of the Centre’s alumni and distinguished speakers. Here we present some photos from the event.

Leading up to this event throughout the year, the Centre’s Principal Investigators presented colloquia that gave a snapshot of the Centre’s current research. Enjoy overleaf some snippets from live-drawn sketches by local company Idea Ink that summarise each talk. The videos and full sketch-notes can be found online.

CQT10 conference speakers

Quantum simulation with classical and quantum computers
Ignacio Cirac
Max-Planck-Institut für Quantenoptik

Rigorous RG: a provably efficient algorithm for simulating 1D quantum systems
Umesh Vazirani
UC Berkeley

Quantum Computing with Trapped Atomic Ions
Christopher Monroe
JQI, QuICS, and University of Maryland

The neutron as a quantum particle and wave
Charles Clark
National Institute of Standards and Technology

Jerome Cardano: The Quantum Astrologer
Michael Brooks
Freelance Writer

Contributed talks from CQT alumni
Priyam Das
Marcelo Santos
Kavian Modi

Ritayan Roy
Marcelo Santos
Wu Xingyao
Yong Siah Teo

It was our birthday, so we had cake. What may not be obvious in the picture is that the 1 and 0 on top of the cake are qubits in superposition. Whether they appear as 1 or 0 depends on the viewing angle.

Artists from Idea Ink, a graphic recording company in Singapore, took notes in cartoon form on each of the conference talks.

There’s always more to learn. We closed our conference with a poster session of results from CQTians and colleagues.

Over 7–8 December, we hosted a two-day conference that brought together members of CQT, some of the Centre’s alumni and distinguished speakers. Here we present some photos from the event.

Leading up to this event throughout the year, the Centre’s Principal Investigators presented colloquia that gave a snapshot of the Centre’s current research. Enjoy overleaf some snippets from live-drawn sketches by local company Idea Ink that summarise each talk. The videos and full sketch-notes can be found online.

CQT10 conference speakers

Quantum simulation with classical and quantum computers
Ignacio Cirac
Max-Planck-Institut für Quantenoptik

Rigorous RG: a provably efficient algorithm for simulating 1D quantum systems
Umesh Vazirani
UC Berkeley

Quantum Computing with Trapped Atomic Ions
Christopher Monroe
JQI, QuICS, and University of Maryland

The neutron as a quantum particle and wave
Charles Clark
National Institute of Standards and Technology

Jerome Cardano: The Quantum Astrologer
Michael Brooks
Freelance Writer

Contributed talks from CQT alumni
Priyam Das
Marcelo Santos
Kavian Modi

Ritayan Roy
Marcelo Santos
Wu Xingyao
Yong Siah Teo

It was our birthday, so we had cake. What may not be obvious in the picture is that the 1 and 0 on top of the cake are qubits in superposition. Whether they appear as 1 or 0 depends on the viewing angle.

Artists from Idea Ink, a graphic recording company in Singapore, took notes in cartoon form on each of the conference talks.

There’s always more to learn. We closed our conference with a poster session of results from CQTians and colleagues.
Quantum simulations with strongly interacting photons: Merging condensed matter with quantum optics for quantum technologies

Dimitris Angelakis

Foundations of lattice-based cryptography

Divesh Aggarwall

What do the data tell us?

Berge Englert

Secure quantum computation

Joe Fitzsimons

The applied side of Bell nonlocality

Valerio Scarani

Quantum optics with Rydberg atoms

Wenhui Li

Quantum physics: A possible theory of the world as a whole

Vlatko Vedral

Find more details of the talks, videos and the complete sketch-notes at www.quantumlah.org/events/colloquia.php
CQT online
The Centre’s website at www.quantumlah.org offers news, event lists and links to group research pages. The site had over 70,000 users in 2017, with more than 400,000 page views. It relaunched in December 2017 with a new, mobile-friendly design.

CQT’s YouTube channel hosts scientific talks, interviews and short films. It has 700 subscribers and has accumulated over 100 days of ‘watch time’ in the calendar year.

The Centre is also active on Facebook (3.1k followers), Twitter (2.6k followers) and LinkedIn (1.4k followers) and offers an e-newsletter (600 subscribers).

In the news
There were more than 50 news stories in 2017 that mentioned CQT or CQT research. Highlights include:

• Singapore newspaper The Straits Times featured the results of a collaboration between Dimitris Angelakis’ group and scientists at Google as a picture story under the heading ‘Beautiful Science’. The results (see pp.32–35) were also covered in media including the Asian Scientist, ScienceDaily and on Greek television.

• There was a flurry of news about the publication of first results in June 2017 from the satellite Micius, launched by China to demonstrate quantum communication from orbit. CQT’s Alexander Ling, who also works on quantum satellites (see pp.45–49) was interviewed by media including Singapore’s The Straits Times.

• BBC News also quoted CQT Director Artur Ekert on China’s quantum satellite. Artur invented the entanglement-based protocol for quantum cryptography in the “90s. He told the BBC “when I proposed the scheme, I did not expect it to be elevated to such heights.”

• The Economist published a special package of features on quantum technologies in March 2017 titled ‘Quantum leaps: a mind-bending technology goes mainstream’. CQT’s Vlatko Vedral was among the scientists interviewed.

Schools outreach
We’re keen to support and encourage young students’ interest in science. This year the Centre hosted more than 200 students – from high schools, junior colleges and undergraduate programmes – across different events.

• 45 students participated in CQT’s Generation Q Camp (see pp.50–53), spending a week in the Centre for classes and activities.

• Supporting events organised by the NUS Department of Physics, we offered lab visits to around 150 students taking part in a Physics Enrichment Camp and 50 students and teachers competing in the International Young Physicists Tournament.

• CQT participated in the NUS Faculty of Science Open House, offering an introductory talk and guided lab tours.

Public outreach
We aim to make our research accessible through the materials we share online and to spark curiosity and conversation about the subject through our public engagement activities.

• CQT has run the Quantum Shorts competitions since 2012 as an annual celebration of short films and fiction inspired by quantum physics. The 2016 call for films wrapped up in 2017 with screenings of the ten finalists, selected from over 200 entries, in four countries at prestigious venues. The venues included Singapore’s ArtScience Museum (see p.23).

• The 2017 call for fiction closed in December with some 400 entries, with winners to be announced in 2018.

• The Centre was a partner in the NUS Arts Festival 2017 with collaborations in dance and music (see p.25). Research Fellow Andrew Garner, a partner in the Quantum Music project wrote for the NUS Artzone magazine “I believe the task faced by scientists and artists is the same: to observe a facet of reality, distil its essence, and communicate this insight to others. Hence, there is much to gain through dialogue between artists and scientists.”

• BBC News also quoted CQT Director Artur Ekert on China’s quantum satellite. Artur invented the entanglement-based protocol for quantum cryptography in the ‘90s. He told the BBC “when I proposed the scheme, I did not expect it to be elevated to such heights.”

• The Economist published a special package of features on quantum technologies in March 2017 titled ‘Quantum leaps: a mind-bending technology goes mainstream’. CQT’s Vlatko Vedral was among the scientists interviewed.

• The Economist published a special package of features on quantum technologies in March 2017 titled ‘Quantum leaps: a mind-bending technology goes mainstream’. CQT’s Vlatko Vedral was among the scientists interviewed.

Outreach ambassadors
The centre’s outreach team is supported by research staff and students in delivering these activities. Special thanks to our outreach ambassadors of 2017: Andrew Garner, Bhaskar Halder, Hermann Heinonen, Alexander Hui Jun Hoo, Mathias Seidler, Jamie Sikora, Suen Whei Yeap and Jirawat Tangpanitanon

In dance and music (see p.25). Research Fellow Andrew Garner, a partner in the Quantum Music project wrote for the NUS Artzone magazine “I believe the task faced by scientists and artists is the same: to observe a facet of reality, distil its essence, and communicate this insight to others. Hence, there is much to gain through dialogue between artists and scientists.”

• The Centre offered a public lecture in partnership with Singapore Science Centre by visiting physicist Howard Wiseman. Over 100 people registered for the talk ‘Are we Living in The Matrix’ – also available to watch on CQT’s YouTube channel.

Outreach ambassadors
The centre’s outreach team is supported by research staff and students in delivering these activities. Special thanks to our outreach ambassadors of 2017: Andrew Garner, Bhaskar Halder, Hermann Heinonen, Alexander Hui Jun Hoo, Mathias Seidler, Jamie Sikora, Suen Whei Yeap and Jirawat Tangpanitanon
Expenditure in 2017

<table>
<thead>
<tr>
<th>Category</th>
<th>Manpower</th>
<th>Other</th>
<th>Equipment</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core</td>
<td>8,199,903</td>
<td>6,544,903</td>
<td>1,181,120</td>
<td>15,925,926</td>
</tr>
<tr>
<td>External Grants</td>
<td>2,716,501</td>
<td>2,289,673</td>
<td>1,152,833</td>
<td>6,159,007</td>
</tr>
<tr>
<td>NUS – Singtel Cyber Security</td>
<td>156,889</td>
<td>14,599</td>
<td>185,422</td>
<td>356,910</td>
</tr>
<tr>
<td>R&D Lab – Theme 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>11,073,293</td>
<td>8,849,175</td>
<td>2,519,375</td>
<td>22,441,843</td>
</tr>
</tbody>
</table>

Stakeholder Support

CQT’s operations are supported by its stakeholders through direct funding and other contributions. Singapore’s National Research Foundation and Ministry of Education awarded $185 million in core funding for the Centre’s first ten years. Following the Centre’s international review in 2015, CQT is receiving a further $100 million in follow-on-funding for the period 2017–2022.

CQT is an autonomous research centre hosted by the National University of Singapore. It also has staff at the Nanyang Technological University and the Singapore University of Technology and Design. Support from the universities includes provision of building space, administrative staff and contributions to PI salaries.

External Grants

CQT Principal Investigators and Research Fellows have received a number of local and international grants for their work. In 2017, the Centre’s active grants include awards from the Ministry of Education, the National Research Foundation and the Agency for Science, Technology and Research, all in Singapore. International grants come from the Foundational Questions Institute, the John Templeton Foundation and the Air Force Office of Scientific Research.
SUPPORTERS

Ministry of Education
SINGAPORE

NATIONAL RESEARCH FOUNDATION
Prime Minister's Office
SINGAPORE

NANYANG TECHNOLOGICAL UNIVERSITY
SINGAPORE

NUS
National University of Singapore

SUTD
SINGAPORE UNIVERSITY OF TECHNOLOGY AND DESIGN

CNRS

MajuLab