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Summary

In this thesis, the spin-density functionals are derived for the ground-state energies of a

two-dimensional gas of neutral atoms with magnetic-dipole interaction, in the Thomas-

Fermi-Dirac approximation. For many atoms in a harmonic trap, we discuss the numerical

procedures necessary to solve for the single-particle density and spin-imbalance density,

in dependence on the interaction strength and the external magnetic field. We also give

analytical solutions in the weak-interaction limit that is relevant for experiments.
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Chapter 1

Introduction

It is now well-known that certain condensed-matter phenomena can be reproduced by

loading ultra-cold atoms into optical lattices [1, 2], with an advantage that the relevant

parameters, such as configuration and strength of potential, interatomic interaction and

so on, can be accurately controlled, while ridding spurious effects that destroy quantum

coherence. In the local group, the perspective experiment to study the behaviour of ultra-

cold fermions in the honeycomb lattice has initiated theoretical studies of the system. As

part of this activity, this thesis focuses on the collective behaviour of fermions with

magnetic-dipole interaction, confined in a two-dimensional (2D) harmonic potential.

Density functional theory (DFT), first formulated for the inhomogeneous electronic

gas [3], is in fact valid generally for a system of interacting particles under the influence

of an external potential, provided that the ground state is not degenerate [4], which

is not a serious constraint for practical applications. While the formalism itself can be

applied to both the spatial [3] and the momental density [5], the spatial-density formalism

gives a more natural description in the case of a position-dependent interaction, such as

the magnetic dipole interaction. We derive the density functionals and investigate the

ground-state density and energy of the system.

The thesis is organized as follows. Chapter 2 gives a brief overview of ideas behind

DFT that is relevant to our calculation. In Chap. 3, we review the results for our earlier

11



work on the density functional for the ground-state energy of a 2D, spin-polarized (SP)

gas of neutral fermionic atoms with magnetic-dipole interaction, in the Thomas-Fermi-

Dirac (TFD) approximation. This formalism is then generalized to a system allowing a

spin-mixture (SM), Chap. 4, where the spin-density functional is derived and numerical

procedures to solve for the single-particle spatial density is outlined. We conclude with

a summary and a brief outline of prospective work in Chap. 5. The mathematical proce-

dures to derive an expression for the interaction energy for a one-dimensional (1D) system

is reproduced in Appendix A, and a review of other research projects of the candidate is

included as Appendix B.
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Chapter 2

Density Functional Theory: a brief

overview

Before presenting this work, which is based on DFT, it is helpful to briefly outline the

ideas relevant to our application.

The basic concept behind DFT is simple yet elegant. It states that the ground state

properties of a system of many particles subjected to an external potential is a functional

of the single-particle density, which is treated as the basic variable function [3]. The

statement was soon shown to be valid for interacting system with an effective single-

particle potential in the equivalent orbital description [6].

For any state | 〉 of a system of N identical particles, the single-particle spatial density

is defined as

n(r) = N

∫

(dr2) · · · (drN)
∣
∣〈r, r2, · · · , rN | 〉

∣
∣
2
, (2.1)

where the ri denotes the position of the i th particle and (dri) denotes the corresponding

volume element. The pre-factor, N , arises from the fact that the wave function is properly

symmetrized.

Suppose two different external potentials V1,2(r) applied to the same system give

identical ground-state single-particle density, n(r), one could find the ground-state energy

13



for each potential,

E1 = 〈1|H1|1〉 < 〈2|H1|2〉 = E2 +

∫

(dr) (V1(r) − V2(r))n(r) ,

E2 = 〈2|H2|2〉 < 〈1|H2|1〉 = E1 +

∫

(dr) (V2(r) − V1(r))n(r) , (2.2)

where H1,2 = Hkin +
∑N

j=1

(
Vint(rj)+V1,2(rj)

)
are the Hamilton operators, being the sum

of the kinetic, effective interaction, and potential terms, and |1〉, |2〉 are the respective

ground states. The sum of the above equation pair leads one to the contradiction that

E1 + E2 < E1 + E2 , (2.3)

which implies that the ground-state single-particle density is in fact uniquely defined by

the external potential of the system, provided the ground state is not degenerate, which

is not a serious constraint for practical applications.

It is shown in [3] that the ground state energy, written as a functional of the density,

assumes its minimum for the correct density, constrained by normalization. It is then

possible to apply variational principle and find the density for any given external potential.

Since the establishment of this powerful tool, extensions in various aspects are pro-

posed (see [4] and references therein for a review). The work in treating SM are of

particular interest to us, due to the spin-dependent nature of the magnetic dipole-dipole

interaction. Besides the single-particle density, another function, be it the magnetic mo-

ment density in [4], or in our case the spin-imbalance density, is needed as the variable

function, over which the minimization of ground-state energy should be done.
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Chapter 3

The spin-polarized case in 2D

In this section, we briefly review the results presented in the candidate’s BSc thesis [7]

which deals with a SP system.

3.1 Into the flatland

In order to properly handle the 2D functionals, some careful consideration is necessary,

as the density functionals for a system with dipole-dipole interaction are well known in

3D [8], but display no obvious dependence on the dimensionality.

We consider here a stiff harmonic trapping potential in the z-direction with trapping

frequency ωz, so that at T = 0K the system remains in the axial ground state, giving rise

to a factorizable Gaussian dependence in both z and pz in the Wigner function,

ν(r,p) = ν⊥(r⊥,p⊥)2 exp

(

−z
2

l2z
− p2

zl
2
z

h̄2

)

, (3.1)

where lz =
√

h̄/(Mωz) is the harmonic oscillator length scale in the z-direction, the

numerical factor of 2 is needed for normalization, and the subscript ‘⊥’ indicates that

these various quantities live in the transverse xy-plane. Although the limit of ωz → ∞

is taken for mathematical convenience whenever possible, ωz should be regarded as a

large but finite number for a realistic situation, and the condition h̄ωz ≫ kBT should be

15



satisfied in order to achieve a 2D geometry for the system of ultra-cold atoms that we

have in mind.

Correspondingly, the densities in 3D and those in 2D are related by

n(1)(r′; r′′) = n
(1)
⊥ (r′⊥; r′′⊥)

1

lz
√
π

exp

[

−4z2
+ + z2

−
4l2z

]

,

n(r) = n⊥(r⊥)
1

lz
√
π

exp

[

−z
2

l2z

]

,

ρ(p) = ρ⊥(p⊥)
lz

h̄
√
π

exp

[

−p
2
zl

2
z

h̄2

]

, (3.2)

where z+ = 1
2
(z′ + z′′), z− = z′ − z′′, such that the 2D densities and Wigner function are

related in a similar manner as their 3D counter parts,

n
(1)
⊥ (r′⊥; r′′⊥) =

∫
(dp⊥)

(2πh̄)2
ν⊥

(r′
⊥

+r′′
⊥

2
,p⊥

)
eip⊥·(r′

⊥
−r′′

⊥
)/h̄ ,

n⊥(r⊥) =

∫
(dp⊥)

(2πh̄)2
ν⊥(r⊥,p⊥) ,

ρ⊥(p⊥) =

∫
(dr⊥)

(2πh̄)2
ν⊥(r⊥,p⊥) , (3.3)

and are normalized to the number of particles,

N =

∫

(dr⊥)n⊥(r⊥) =

∫

(dp⊥) ρ⊥(p⊥) . (3.4)

3.2 Thomas-Fermi-Dirac approximation

To evaluate the density functionals, further assumptions about the 2D Wigner function

and two-body density matrix are necessary. In the spirit of the approach that was pio-

neered by Thomas [9], Fermi [10], and Dirac [11], a two-fold semiclassical approximation is

employed here. First, n(2) is replaced by products of n(1) factors (due to Dirac) according

16



to

n(2)(r′1, r
′
2; r

′′
1, r

′′
2)

= n(1)(r′1; r
′′
1)n

(1)(r′2; r
′′
2) − n(1)(r′1; r

′
2)n

(1)(r′′2; r
′′
1),

=
1

l2zπ
e
−

4z2
+

+z2
−

2l2z

(

n
(1)
⊥ (r′1⊥; r′′1⊥)n

(1)
⊥ (r′2⊥; r′′2⊥) − n

(1)
⊥ (r′1⊥; r′′2⊥)n

(1)
⊥ (r′′2⊥; r′1⊥)

)

, (3.5)

for a SP system. Such a splitting in fact corresponds to the direct and exchange terms

when evaluating the interaction energy, Edd. Second, the Wigner function is a uniform

disc of a finite size (due to Thomas and Fermi (TF))

ν⊥(r⊥,p⊥) = η( h̄24πn(r⊥)2 − p2
⊥ ) , (3.6)

where η( ) is the Heaviside unit step function, the power and pre-factor of the density

are determined by normalization.

3.3 The 2D functionals for a spin-polarized system

By directly evaluating the z- and pz-integration and leaving out any additive constants

that do not play a role in the dynamics of the system, we obtain

Etrap[n] =

∫

(dr)
1

2
Mω2r2 n(r) ,

Ekin[n] =

∫

(dr)
h̄2

M
πn(r)2 ,

Edd[n] =
µ0µ

2

4π

∫

(dr)

(
256

45

√
π n(r)5/2 − πn(r)

√
−∇2 n(r)

)

≡ E
(1)
dd + E

(2)
dd , (3.7)
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where
√
−∇2 is an integral operator that is given by

√
−∇2 n(r) =

∫
(dr′)

(2π)2
(dk) k e−ik·(r−r′)n(r′) , (3.8)

µ0 is the permeability of free space, and µ is the magnitude of the magnetic dipole of an

atom. Note that we have left out the subscripts ‘⊥’ and will continue doing so from here

onwards. It is understood that all the densities here and after refer to the 2D definition

specified in Eqs. (3.1) and (3.3), and all orbital vector quantities of the system live in the

transverse xy-plane.

As a result, the TFD approximated ground state energy is given by the sum of the

terms listed in Eq. (3.7). The density that minimizes the total energy, constrained by

normalization (3.4), must obey

2h̄2

M
πn(r) +

1

2
Mω2r2 +

µ0µ
2

4π

[
128

9

√
π n(r)3/2 − 2π

√
−∇2 n(r)

]

=
1

2
Mω2R2 , (3.9)

where 1
2
Mω2R2 is the chemical potential.

3.4 Dimensionless variables

We define the natural length scale a , the dimensionless position, x, and density, g(x), in

accordance with

a = l0N
1/4,

x =
r

a
,

g(x) =
a2

N
n(r) , (3.10)
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so that the scaled density is normalized to unity. Choosing h̄ωN3/2 as the energy unit,

we have

E
(2D)
TFD[g]

h̄ωN3/2
=

∫

(dx)

[

πg(x)2 +
1

2
x2g(x)

+ǫN1/4

(
256

45

√
π g(x)5/2 −N−1/2πg(x)

√
−∇2 g(x)

)]

, (3.11)

where −∇2 now differentiates with respect to position x, and

ǫ =
µ0µ

2

4πl30

/

(h̄ω) (3.12)

is a dimensionless interaction strength that can be understood as the ratio between the

interaction energy of two parallel magnetic dipoles µ separated by l0 =
√

h̄/(Mω) and

the transverse harmonic oscillator energy scale.

The pre-factor N−1/2 indicates that E
(2)
dd is a correction to the total Edd in the one-

percent regime, for a modest value of N ∼ 104 for typical experiments with ultra-cold

atoms. Given that the TFD approximation is generally introducing errors of the order

of a few percent, E
(2)
dd is of a negligible size. Therefore, consistently discarding it and all

other N−1/2 terms yields

ǫN1/4 128

9

√
π

√

g(x) 3 + 2π
√

g(x) 2 +
1

2
(x2 −X2) = 0 , (3.13)

which can be solved analytically.

In Fig. 3.1, we plot the dimensionless density g(x) for different values of ǫN1/4. We

observe that the stronger the dipole repulsion (larger ǫ), the lower the central density and

the larger the radius of the cloud. This feature is reminiscent of that displayed by the

condensate wave function of bosonic atoms when a repulsive contact interaction is taken

into account in the mean-field formalism [12]. In contrast to the (lack of) isotropy in the

spatial density of a 3D SP dipolar Bose-Einstein condensate in a spherically symmetric
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x

0

0.1

0.2

g(x)

ǫN1/4 = 10

1

0.1

0.01

Figure 3.1: The dimensionless spatial density g(x) at various values of ǫN1/4 =
0.01, 0.1, 1, 10 (thin lines). The TF profile (thick dashed line) is included as a reference.
Note that there is an insignificant difference from the TF profile for ǫN1/4 < 10−2.

confinement [13], the simple symmetry of the isotropic harmonic confinement is preserved

in the ground-state density in 2D.

For weakly interacting atoms, we obtain the various contributions to the energy (in

units of h̄ωN3/2) up to the first order in ǫN1/4,

Ekin =

√
2

3
− 128

105π
21/4ǫN1/4,

Etrap =

√
2

3
+

128

105π
21/4ǫN1/4,

E
(1)
dd =

512

315π
21/4ǫN1/4 ≈ 0.615 ǫN1/4. (3.14)
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It is also possible to obtain a power law in the limit of large N , namely,

Ekin ∼ N7/5 ,

Etrap ∼ N8/5 ,

E
(1)
dd ∼ N8/5 ,

E
(2)
dd ∼ N1.106 , (3.15)

where the final power law is obtained by a numerical fit.
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Chapter 4

The spin-dependent formalism

While the above formalism yields the TFD approximated ground-state density profile and

energy for a 2D cloud of spin-1/2 fermions that are polarized along the axial direction

and are hence repelling each other, the lack of spherical symmetry of the magnetic-

dipole interaction, which is the source of some interesting predictions such as anisotropic

density in an isotropic trap [13], is not well reflected due to the peculiarity of both the

configuration and the low dimension.

In order to take the spin-dependent nature of the magnetic-dipole interaction into

consideration, we extend the formalism above by

1. introducing an external magnetic field strong enough to define a local quantization

axis; and

2. constructing the spin-dependent Wigner functions and hence the corresponding one-

and two-body spin-density matrices.

4.1 Wigner function with spin-dependence

For an arbitrary external magnetic field,

B(r) = B(r) e(r), (4.1)
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the magnetic energy of a single dipole is given by

−B(r) · µ = −B(r)µ e(r) · σ

≡ −v(r) e(r) · σ, (4.2)

where σ is the Pauli vector of a single dipole. We note that B(r) (and therefore e(r))

are external quantities which are allowed to have the usual 3 spatial components. The

TF approximated Wigner function is then a function of σ,

ν(r,p) = η
(
− ζ − p2

2M
− V (r) + v(r) e(r) · σ

)

=
1 + e(r) · σ

2
η
(
P+(r) − p

)
+

1 − e(r) · σ
2

η
(
P−(r) − p

)
, (4.3)

with

P±(r) =
[
2M

(
− ζ − V (r) ± v(r)

)]1/2
, (4.4)

and −ζ is the chemical potential. The underscore is a reminder that this Wigner function

is 2 × 2-matrix valued. We remark that the second equality in Eq. (4.3) makes use of

the fact that any function of σ, however complicated, can always be regarded as a linear

function of σ. A quick comparison with Eq. (3.6) reveals a simple interpretation of the

spin-dependent TF approximation of the Wigner function: there are two uniform discs of

generally unequal size in the phase space now, each associated with one spin orientation;

the radius of each disc is given in Eq. (4.4). In the event of a fully polarized cloud,

P−(r) = 0, and a single disc as in Eq. (3.6) is recovered. In the opposite limit, we have

P+(r) = P−(r) for a balanced mixture, and the two discs coincide.

Now we can obtain the single-particle density with a corresponding spin dependence,

n(r) =
1+ e(r) · σ

2

(P+(r)

2πh̄

)2

π +
1− e(r) · σ

2

(P−(r)

2πh̄

)2

π

≡ 1
2

(
n(r) + s(r)e(r) · σ

)
, (4.5)
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with the total density n(r) and spin-imbalance density s(r) given by

n(r) = π

((P+(r)

2πh̄

)2

+
(P−(r)

2πh̄

)2
)

,

s(r) = π

((P+(r)

2πh̄

)2

−
(P−(r)

2πh̄

)2
)

. (4.6)

We observe that these two functions must obey

|s(r)| ≤ n(r), (4.7)

but are otherwise independent of each other. Therefore, the minimization to achieve

the ground-state energy has to be done over both functions under the constraint of

normalization and Eq. (4.7).

4.2 Extending Dirac’s approximation

Before we proceed to derive the density functionals, it is necessary to extend Dirac’s

approximation, Eq. (3.5), into the corresponding spin-dependent form, n(2)(r′, r′′; r′, r′′),

which is required in the evaluation of Edd. We assume that the ground-state many-body

wave function of a N -fermion system can be written as a single Slater determinant,

ψ(r1, · · · , rN) =
1√
N !

det
m,l

[
φm(rl)

]
, (4.8)

where

φm(rj) =






αm(rj)

βm(rj)




 (4.9)

denotes a single-particle orbital with two spin components αm and βm, rj is a 2D position

variable, while rj refers to the combination of the position and spin variables, so that
∫
drj symbolically means summing over the jth spin variable and integrating the jth
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position variable.

When expressing the one- and two-body spin-density matrices in terms of the single

particle orbitals, we get

n(r′; r′′) = N

∫

dr2 · · · drN ψ(r′, r2, · · · , rN) ψ∗(r′′, r2, · · · , rN)

=
∑

m






αm(r′)α∗
m(r′′) αm(r′)β∗

m(r′′)

βm(r′)α∗
m(r′′) βm(r′)β∗

m(r′′)






≡






n↑↑(r
′; r′′) n↑↓(r

′; r′′)

n↓↑(r
′; r′′) n↓↓(r

′; r′′)




 ,

n(2)(r′1, r
′
2; r

′′
1, r

′′
2) =

N(N − 1)

2

∫

dr3 · · · drN ψ(r′1, r
′
2, r3, · · · , rN)ψ∗(r′′1 , r

′′
2 , r3, · · · , rN)

=
1

2

∑

l,m






αl(r
′
1)

βl(r
′
1)




 ⊗






αm(r′2)

βm(r′2)
















αl(r
′′
1)

βl(r
′′
1)




 ⊗






αm(r′′2)

βm(r′′2)






−






αm(r′′1)

βm(r′′1)




 ⊗






αl(r
′′
2)

βl(r
′′
2)











†

=
1

2

(

n(r′1; r
′′
1) ⊗ n(r′2; r

′′
2) −

[
n(r′1; r

′′
2) ⊗ n(r′2; r

′′
1)

]

T23

)

, (4.10)

where the subscript ‘T23
’ means interchanging the second and the third columns. The

double summation in n(2) includes the self-energy, which has equal contributions to the

direct and exchange terms and hence does not contribute to the sum. We remark that

strictly speaking, this extension should have been in 3D, just as the original work by

Dirac. However, since we consider a system in the axial ground state, Eq. (4.10) is also

valid in 2D, with an exponential pre-factor that depends on z′ and z′′, just as that in the

lower line of Eq. (3.5), to be integrated with the relevant z-dependence in the interaction
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potential. Note that the surviving factor is of significance in the contact interaction.

4.3 The spin-density functionals

With Eq. (4.5), we can evaluate the trap and magnetic energy directly,

Etrap = tr2×2

∫

(dr) 1
2
Mω2r2 n(r)

=

∫

(dr) 1
2
Mω2r2 tr2×2 n(r)

=

∫

(dr) 1
2
Mω2r2 n(r),

Emag = tr2×2

∫

(dr) (−µ) · B(r) n(r)

= −
∫

(dr) v(r) tr2×2 e(r) · σ n(r)

= −
∫

(dr) v(r)s(r). (4.11)

The evaluation of kinetic energy requires Eq. (4.3),

Ekin = tr2×2

∫

(dr)
(dp)

(2πh̄)2

p2

2M
ν(r,p)

=

∫

(dr)
(dp)

(2πh̄)2

p2

2M
tr2×2 ν(r,p)

=

∫

(dr)
(dp)

(2πh̄)2

p2

2M

1

2

(

η(P+(r) − p) + η(P−(r) − p)
)

=

∫

(dr)
1

(2πh̄)2

π

2M

(
P+(r)4 + P−(r)4

)

=

∫

(dr)
πh̄2

2M

(
n(r)2 + s(r)2

)
. (4.12)

To evaluate Edd, we first observe that the dipole-dipole interaction potential is natu-
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rally split into a singlet and a triplet components,

Vdd(r) =
µ0

4π
µ

(1) ·
[

1
↔

r3
− 3

rr

r5
︸ ︷︷ ︸

triplet

− 8π

3
δ(r)1

↔

︸ ︷︷ ︸

singlet

]

· µ(2), (4.13)

so that the singlet interaction energy can be computed by direct integration with the

actual expression of n(2)(r′, r′′; r′, r′′),

Edd,s = tr4×4

∫

(dr′)(dr′′)
1

lz
√

2π
n(2)(r′, r′′; r′, r′′)

µ0

4π
µ ·

(

− 8π

3
δ(r′ − r′′)1

↔
)

· µ

=

∫

(dr′)(dr′′)
1

lz
√

2π

µ0µ
2

4π

(

− 8π

3
δ(r′ − r′′)

)

tr4×4 σ · 1
↔ · τ n(2)(r′, r′′; r′, r′′)

=

√
2π

lz

µ0µ
2

4π

∫

(dr)
[
n(r)2 − s(r)2

]
, (4.14)

where the factor of 1/(lz
√

2π ) originates from the z-integration while reducing the di-

mensionality,
∫

dz+dz−
1

l2zπ
e
−

4z2
+

+z2
−

2l2z δ(z−) =
1

lz
√

2π
. (4.15)

We remark that, firstly, the positive sign of the energy might be in apparent contradiction

with the classical picture of two opposite dipoles attracting each other, but we need to

remember that the state of two opposite dipoles is a superposition of a singlet and triplet

components, and the long-range attraction is only experienced by the triplet, leaving the

singlet interacting only via a repulsive contact interaction. Secondly, owing to the 1/lz

scaling, the relative strength of this term can be tuned by adjusting the stiffness of the

z-confining trap.

On the other hand, the triplet states interact according to the remaining terms in

the dipole potential. Since these states are symmetric under particle exchange, we use,

instead of the n(2) in Eq. (4.10), an alternative two-body density,

ñ(2)(r′, r′′; r′, r′′) = 1
2

(

n(r′) ⊗ n(r′′) − n(r′; r′′) ⊗ n(r′′; r′)
)

, (4.16)
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which yields the same energy but greatly simplifies the computation due to its tensor

product structure. The triplet interaction energy is then given by

Edd,t = tr4×4
µ0µ

2

4π

∫

(dr′)(dr′′)
1

ρ3
ñ(2)(r′, r′′; r′, r′′)

(

σ · τ − 3
σ · ρρ · τ

ρ2

)

, (4.17)

with ρ = r′ − r′′, and τ denotes the Pauli vector of the second atom. To evaluate this

expression, we apply the same procedure as that used to obtain the third line of Eq. (3.7)

and find

E
(1)
dd,t =

32

45

√
2π

µ0µ
2

4π

∫

(dr)
3ez(r)

2 − 1

2

[
(
n(r) + s(r)

)5/2
+

(
n(r) − s(r)

)5/2

−f(γ)

8

(
n(r) + s(r)

)3/2(
n(r) − s(r)

)
]

,

E
(2)
dd,t = − 1

2

µ0µ
2

4π

∫

(dr)(dr′)
∇sz(r) · ∇′sz(r

′) −∇ · s(r)∇′ · s(r′)
|r− r′| , (4.18)

where ez(r) is the z-component of e(r), γ = (P−(r)/P+(r))2, which is essentially the ratio

between the Fermi energies of the minority and majority spin components, and

f(γ) = (γ−1 + 14 + γ)E(γ) + (−γ−1 − 6 + 7γ)K(γ) (4.19)

is a combination of the complete elliptic integrals of the first kind K( ) and second kind

E( ), and is smooth and finite for 0 ≤ γ ≤ 1. We remark that by setting γ = 0, we

recover the E
(1)
dd in Eq. (3.7). It is apparent from Fig. 4.1 that within a small relative

error of 0.4%, f(γ) can be replaced by a linear function f̃(γ) = 15
4
π + (16 − 15

4
π)γ for

simplification.

For computational convenience, we again turn to the dimensionless quantities specified
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f(γ)

15π/4
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Figure 4.1: f(γ) at relevant values of γ. It can be shown that 15π/4 < f(γ) < 16 for
0 < γ < 1.

in Eq. (3.10), with the addition of the dimensionless spin-imbalance density,

h(x) = h(x)e(x),

h(x) =
a2

N
s(r)

≡ cos
(
ϑ(x)

)
g(x), (4.20)

re-parameterized so that Eq. (4.7) is automatically fulfilled. The total energy of the

system is then given by

E
(2D)
TFD[g, ϑ]

h̄ωN3/2
=

∫

(dx)

[
π

2
g(x)2

(

1 + cos2
(
ϑ(x)

)
)

+
1

2
x2g(x) − 1√

N

v(x)

h̄ω
g(x) cos

(
ϑ(x)

)

+ ǫ

√
ωz

ω

√
2π g(x)2

(

1 − cos2
(
ϑ(x)

)
)

+ ǫN1/4 3ez(x)2 − 1

2

256

45

√
π g(x)5/2 χ

(
cos

(
ϑ(x)

))

− ǫN−1/4 1

2

∫

(dx′)
∇hz(x) · ∇′hz(x

′) −∇ · h(x)∇′ · h(x′)

|x − x′|

]

, (4.21)
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1

Figure 4.2: We plot χ(y) (top panel, thin solid line) in comparison with y2 (top panel,
thick dashed line) for 0 ≤ y ≤ 1. The relative error of y2 ≈ χ(y) is shown in the bottom
panel. It is clear that the approximation is accurate within 0.6% of the actual value of
χ(y).

where

χ(y) =
1

25/2

(

(1 + y)5/2 + (1 − y)5/2 − 1

8
f

(
1 − y

1 + y

)

(1 + y)3/2(1 − y)

)

. (4.22)

We observe that similar to the SP case, E
(2)
dd,t is always a factor of N−1/2 smaller than

E
(1)
dd,t for 3ez(x)2−1

2
∼ 1, i.e. an almost normal polarization. Repeating the earlier argument

used in the SP case, we consistently discard it in the following computation. In addition,

numerical evidence shows that

χ
(
cos

(
ϑ(x)

))
≈ cos2

(
ϑ(x)

)
(4.23)

for all x within a relative error of 0.6% (see Fig. 4.2), which gives a strong justification

for using this approximation.
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4.4 A constant magnetic field

For a typical experiment with N = 106 atoms and a radial harmonic confinement of

ω = 2π 20Hz, the TF radius RTF =
√

2 (2N)1/4l0 is in the mm range. Hence, a uniform

magnetic field throughout the extent of the cloud is feasible, so that we have

B(r) = B0e0,

v(r) = B0µ ≡ v0. (4.24)

Applying the variational principle, we find that g(x) and ϑ(x) must obey

g sinϑ

(

A− g cosϑ
(

π − ǫ

√
ωz

ω

√
8π

)

− ǫN1/42Cg3/2 cosϑ

)

= 0 (4.25)

for unconstrained variation of ϑ, and

1

2
(X2 − x2) = g

(

π + ǫ

√
ωz

ω

√
8π

)

− cosϑ

(

A− g cosϑ
(

π − ǫ

√
ωz

ω

√
8π

))

+ ǫN1/4 5

2
Cg3/2 cos2 ϑ (4.26)

for variation of g which is normalized to unity, and the corresponding Lagrange multiplier

is 1
2
X2. Here we have set

A =
v0

h̄ω

1√
N
,

C =
3e20,z − 1

2

256

45

√
π , (4.27)

and the x dependence in g and ϑ is left implicit. We remark that there is no angular

dependence of x in either (4.25) or (4.26) because we left out the integral term, which is a

possible source of anisotropy intrinsic to the dipole-dipole interaction due to the gradient

operators, and chose a uniform and thus isotropic magnetic field. Therefore, we expect
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the solutions to be also isotropic.

We list the various solutions here1. First, there is a trivial solution to Eq. (4.25) for

free space, g = 0, and cosϑ can be obtained from Eq. (4.26) but does not have physical

meaning. Second, we have a SP solution sinϑ = 0 from Eqs. (4.25), and (4.26) reduces

to

ǫN1/4 128

9

3e20,z − 1

2

√
π
√
g 3 + 2π

√
g 2 +

1

2
(x2 −X2) − A = 0 , (4.28)

which is a cubic equation for
√
g and can be solved analytically. Note that this further

reduced to Eq. (3.13) for a normally polarized cloud, i.e. e0,z = 1, as we expect it to do.

Third, we have the SM solution, enforcing

A− g cosϑ
(

π − ǫ

√
ωz

ω

√
8π

)

− ǫN1/42Cg3/2 cosϑ = 0, (4.29)

which follows from Eq. (4.25). This is again cubic in
√
g for each value of cosϑ (barring

cosϑ = 0, which is only possible in the complete absence of any magnetic field, i.e. A = 0),

and establishes a complicated but nevertheless analytic relation between the two. On the

other hand, the pair of (g, ϑ) can be related to the radial position x via Eq. (4.26), which

is quadratic in x. However, we remind the readers that both the SP and SM solutions are

approximate due to Eq. (4.23), even though the error introduced by this approximation

is expected to be small. We remark that depending on the external magnetic field and

interaction strength, the SM solution in the centre should be accompanied by the SP

solution on the peripheral, when the density drops below a critical value such that the

SM solution of Eq. (4.29) is not possible for any values of 0 ≤ cosϑ ≤ 1. We also remark

that there is an interaction dependent threshold of the external magnetic field, beyond

which the SM solution is impossible, i.e. the cloud is always polarized.

1which is now worked out explicitly in the Master thesis of J. Röntynen [14].
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4.5 The weakly-interacting limit

For experiments with ultra-cold atoms, the magnetic-dipole interaction is typically weak.

We can then neglect the interaction terms altogether, and obtain the 0th order approxi-

mation via

πg + cosϑ
(
πg cosϑ−A

)
=

1

2
(X2 − x2),

g sin ϑ
(
πg cosϑ−A

)
= 0. (4.30)

Besides the solution for free space, the two non-trivial solutions are modified accord-

ingly. The SP solution yield the TF profile identical to that given by the formalism for

SP system (see the thick dashed curve in Fig. 3.1). The SM solution is given by

g =







1
2π

(2
√

1 − A2 − x2) 0 ≤ x < x−

1
2π

(
A +

√
1 −A2 − x2

2

)
x− ≤ x ≤ x+

, (4.31)

together with a constant spin-imbalance density in the centre,

g cosϑ =
A

π
, (4.32)

where x± are the radii of the SM (lower sign) and the entire cloud (upper sign) respec-

tively, given by

x± = 2(
√

1 − A2 ±A). (4.33)

A plot of the SM density with A = 0.25 is shown in Fig. 4.3.

However, the existence of a SM requires an extremely weak external magnetic field,

such that

A =
B0µ

h̄ω

1√
N

≤ 1√
2
. (4.34)

This condition arises from the positivity of the radii x±. In usual experimental set-ups,
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x+ xTF

g(x)

0

A/π

1/(
√

2 π)

√
1 − A2 /π

Figure 4.3: The dimensionless density profile of a SM (thin solid line) with A = 0.25,
in comparison with the TF profile (i.e. SP solution, thick dashed line). The thin dashed
line indicates the density of the majority component in the SM. For greater values of A
while keeping A ≤ 1/

√
2 , the density profile approaches that of the SP solution with a

lowering central density and an increasing x±. In the opposite limit, we recover a mixture
of equal spin-components when there is no external magnetic field, i.e. A = 0.

this translates into B ∼ 10mG for a system of N = 106 atoms with a radial harmonic

confinement of ω = 2π 20Hz. In other words, a SP cloud is readily attainable.

4.6 Arbitrary direction of polarization

So far, we have restricted our discussion to a normally polarized cloud. However, the

machinery in principle allows a primitive investigation of a system with an arbitrary

direction of polarization.

Naturally, we expect that only dipole-dipole interaction energy will be affected when

the direction of polarization is changed. A quick look at Eq. (4.21), however indicates

that, more precisely, only the triplet contribution to the interaction is affected. This can

be understood by the fact that the singlet state interact only via the contact term in the

dipole-dipole interaction potential, Eq. (4.13), which is independent on the orientation
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of the quantization axis. For the triplet component, the magnitude of E
(1)
dd,t is modulated

simply by the factor 3ez(x)2−1
2

, hence ranges from +1 to −1
2

times of its maximum value.

On the other hand, E
(2)
dd,t is about a percent of maximum E

(1)
dd,t, so that once ez(x) gets

sufficiently small, i.e. the dipoles are aligned sufficiently close to the transverse xy-plane,

the triplet interaction energy becomes negative, suggesting a collapse. In this scenario,

the functional for the total energy, Eq. (4.21), is not bounded from below, indicating that

further modification of the model is necessary.

On the other hand, a simple calculation of the dynamics of two classical dipoles

shows the time required for two atoms under the influence of an attractive dipolar force

to shorten their separation by half of its initial value, taken to be the size of the cloud, is of

the order of ms. This is consistent with the collapse of dipolar Bose-Einstein Condensate

of 53Cr observed in [13] despite the use of a classical model. Further investigation will be

of interest.
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Chapter 5

Concluding remarks and outlook

We have presented the derivation of the spin-density functionals of a 2D fermionic gas

of dipolar atoms under the scheme of TFD approximation. For a system with many

atoms, we give analytic solution for the single-particle spatial density and spin-imbalance

density, in dependence on the interaction strength and external magnetic field.

For sufficiently weak magnetic field, the system is polarized on the peripheral, but

allows a SM in the centre. Depending on the strength of interaction, there exists a

threshold magnetic field, beyond which the system is always polarized. With modest

experimental parameter and weak interaction, the threshold magnetic field is found to be

weaker than the earth’s magnetic field. This suggests that in order to observe a system

with SM, careful magnetic shielding is necessary.

The presence of dipole-dipole interaction generally increases the size of the system for

a nearly normal polarization where the dipolar interaction is largely repulsive. However,

when a polarization axis close to the transverse plane is chosen, our model fails to yield a

lower bound to the total energy, indicating a collapse of the system. Further improvement

to the model is necessary if one wishes to study the system in this scenario.

Having established the exact functionals, we intend to investigate the excitation en-

ergies of the system for small deviations from the equilibrium. On the other hand, it is

well-known that the TF approximation is problematic at the boundary of the system. We
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will follow up on the gradient corrections of von Weizsäcker type. It is perceivable that

once the corrections are included, E
(2)
dd,t may no longer be negligible. Lastly, we would

like to explore other external trapping potentials, such as anisotropic harmonic traps,

possibly with an optical lattice superimposed.
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Appendix A

Dipole-dipole interaction in a

one-dimensional spin-polarized

system

For completeness, we include here the derivation of the dipole-dipole interaction energy

for a one-dimensional (1D) SP system. First, we consider the reduction of dimensionality

as outlined in Sec. 3.1, but now only the z- and pz-dependence in the single-particle

Wigner function is left unspecified, while in the x- and y-directions, there is a Gaussian

dependence in both position and momentum, due to a stiff radial harmonic confinement.

In the isotropic case, we have ωx = ωy = ω, and the radial harmonic length scale is given

by l0 =
√

h̄/(Mω) , so that the Wigner function reads

ν(r,p) = νz(z, pz)4 exp

(

−x
2 + y2

l20
−

(p2
x + p2

y)l
2
0

h̄2

)

, (A.1)
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z

µ

Figure A.1: An illustration of the spin orientation relative to the 1D cloud. Note that this
corresponds to α = π

2
but the choice of ϕ is arbitrary and does not affect our calculation.

so that the 3D and 1D single-particle densities are related by

n(1)(r′; r′′) = n(1)
z (z′; z′′)

1

l20π
exp

[

−4x2
+ + x2

−
4l20

− 4y2
+ + y2

−
4l20

]

,

n(r) = nz(z)
1

l20π
exp

[

−x
2

l20
− y2

l20

]

,

ρ(p) = ρz(pz)
l20
h̄2π

exp

[

−p
2
xl

2
0

h̄2 −
p2

yl
2
0

h̄2

]

, (A.2)

where the average and difference in the x- and y-coordinates are denoted with subscripts

‘+’ and ‘−’ respectively. Applying Dirac’s decomposition of two-body density matrix, we

have

n(2)(r′, r′′; r′, r′′) =
1

l40π
2
e
−

4x2
++x2

−

2l2
0

−
4y2

++y2
−

2l2
0

(

nz(z
′)nz(z

′′) − n(1)
z (z′; z′′)n(1)

z (z′′; z′)
)

. (A.3)

Since the system is spin-polarized, only the triplet terms in the dipole-dipole interac-

tion potential (4.13) matters. By writing

µ = µ









sinα cosϕ

sinα sinϕ

cosα









, r =









̺ cosφ

̺ sinφ

z









, (A.4)

and choosing a simple geometry where all dipoles are aligned perpendicular to the 1D
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cloud (see Fig. A.1), the triplet interaction potential reads

Vdd,t(r) =
µ0µ

2

4π

1

(̺2 + z2)3/2

[

1 − 3

̺2 + z2

(

̺2 sin2 α cos2(ϕ− φ)

+z2 cos2 α + ̺z sin(2α) cos(ϕ− φ)
)]

→ µ0µ
2

4π

1

(̺2 + z2)3/2

(

1 −
3
2
̺2

̺2 + z2

)

, (A.5)

where we replaced, in the last step, the angular dependence by its average over an interval

of 2π for an isotropic radial confinement. The dipole-dipole interaction energy is then

given by

Edd =
1

2

∫

(dr)(dr′) n(2)(r, r′; r, r′)Vdd,t(r − r′)

=
1

2

µ0µ
2

4π

∫

dx+dy+

( 1

l20π

)

e
− 2

l2
0

(x2
++y2

+)
∫

dz dz′
(

nz(z)nz(z
′) − n(1)

z (z; z′)n(1)
z (z′; z)

)

×
∫ ∞

0

̺d̺(2π)
1

l20π
e−̺2/(2l2

0
)

(
1

(̺2 + z−2)3/2
−

3
2
̺2

(̺2 + z2
−)5/2

)

=
µ0µ

2

4π

∫

dz dz′
(

nz(z)nz(z
′) − n(1)

z (z; z′)n(1)
z (z′; z)

)

× 1√
2 l30

[

(1
2

+ t2)
√
π et2Erfc(t) − t

]

, (A.6)

where t = |z − z′|/(
√

2 l0) is the scaled separation in the z-direction, and Erfc( ) denotes

the complementary error function. We remark that for a 1D system, we need to eventually

look at the l0 → 0+ limit of the expression above. However, further structure of the

single-particle density and density matrix will be necessary for this purpose.

To summarize the SP case, we tabulate the density functionals of both the kinetic

and dipole-dipole interaction energy in 1, 2, and 3D. It is clear that the structure of the

density functionals depends crucially on the spatial dimension. The procedure used here

to reduce dimensionality is by no means unique, but fairly well justified by the strong
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Table A.1: Summary of the density functionals for the kinetic energy and the dipole-
dipole interaction energy in 1D, 2D, and 3D. In 1D, the spins are polarized normal to
the z-axis, along which the atoms align. In 2D and 3D, the spins are polarized along the
z-direction, θ in 3D refers to the azimuthal angle of the vector r − r′.

Ekin Edd

1D

∫

dz
π2h̄2

6M
n(z)3 µ0µ

2

4π

∫

dz dz′
(

n(z)n(z′) − n(z; z′)n(z′; z)

)

× 1√
2 l30

[(1

2
+ t2

)√
π et2Erfc(t) − t

]

2D

∫

(dr⊥)
πh̄2

2M
n(r⊥)2 µ0µ

2

4π

∫

(dr⊥)

[
256

45

√
π n(r⊥)

5

2 − πn(r)
√
−∇2 n(r⊥)

]

3D

∫

(dr)
h̄2

20π2M

[
6π2n(r)

] 5

3
µ0µ

2

4π

∫

(dr)(dr′)
1

2
n(r)

1 − 3 cos2 θ

|r− r′|3 n(r′)

confinement of a stiff harmonic trap in a possible experimental set-up.
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Appendix B

A short review of concurrent works

Meanwhile, the candidate has been working on a separate project with P. Vignolo et

al in paralell. While the subject matter does not fit into the context of density func-

tional theory, we include a brief review of the project and results obtained without the

mathematical details.

The exact solution for many-body wave function of the inhomogeneous, impenetrable

Bose gas in the Tonks-Girardeau limit (infinitely strong point interaction limit) can be

generalized to multi-component systems, which brings about novel issues such as spa-

tial separation and modification of coherence properties. We consider a 1D mixture of

impenetrable bosons and spin-polarized, non-interacting fermions with infinitely strong

point interaction between the two species, and further assume that all particles are of

equal mass and feel an identical harmonic confinement in the axial direction. The infinite

interaction strength among the bosons and between the two species, together with Pauli

principle, ensures that the many-body spatial wave function must vanish when any pair

of coordinates takes on the same value. Under such constraints, the Fermi-Bose mapping

coined by Girardeau [15] and extended to Bose-Fermi mixture by Girardeau and Minguzzi

[16] gives a convenient starting point to build the ground state wave function, namely,

to construct a Slater determinant of N orbitals and “repair” the symmetry properties

according to the particle statistics.
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With the simple and yet relatively intuitive assumption that the many-body spatial

wave function is anti-symmetric only under the exchange of two fermionic coordinates1,

we construct the total wave function as the product of a Slater determinant modulus

(symmetric) and an anti-symmetrizer (anti-symmetric) that impose only the fermionic

anti-symmetry. The resulting wave function allows the computation of the single-particle

spatial density, spatial correlation, as well as momentum distribution, for both species

[18]. We found that both species have spatial density extending over the entire cloud,

indicating no phase separation; the single-particle correlation is strongly modified due to

interaction; the momentum distribution of the fermions, consequently, decays according

to a power law at large momentum, similar to that of the Tonks-Girardeau gas.

On the other hand, the assumed symmetry under boson-fermion exchange is somewhat

arbitrary in the true infinite-interaction limit. Here, the number of degenerate ground

states is quantified by the number of permutations allowed and is generally large. We

propose a basis for the degenerate manifold, where we sort all permutations according

to the configuration [19], i.e. the relative position of the bosons and fermions, and assign

a relative sign to each permutation in accordance with particle statistics, so that each

state in the resulting basis is symmetric under boson-boson exchange and anti-symmetric

under fermion-fermion exchange. We further propose to characterize the ground-state

degeneracy at finite interaction with Young tableaux, and compute relevant quantities

accordingly. This work is currently in progress and a manuscript will be prepared shortly.

1so that boson-fermion exchange is symmetric under our assumption, and is justified by the fact
that the symmetric wave function for a two-particle problem [17] has a lower energy at large but finite
interaction.
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