
PROOF OF THE ORTHOGONAL
MEASUREMENT CONJECTURE FOR

TWO STATES OF A QUBIT

ANDREAS KEIL

NATIONAL UNIVERSITY OF

SINGAPORE

2009



PROOF OF THE ORTHOGONAL
MEASUREMENT CONJECTURE FOR

TWO STATES OF A QUBIT

ANDREAS KEIL
(Diplom-Physiker), CAU Kiel

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF

PHILOSOPHY

DEPARTMENT OF PHYSICS

NATIONAL UNIVERSITY OF SINGAPORE

2009



iii

Acknowledgements

I would like to thank everybody who supported me during the time of this thesis.

Especially I want to thank my supervisors Lai Choy Heng and Frederick Willebo-

ordse, their continued support was essential. For great discussions I want to thank

Syed M. Assad, Alexander Shapeev and Kavan Modi. Special thanks go to Berge

Englert and Jun Suzuki, without them this conjecture would still have been dormant.

Thank you!



Contents

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

1 Introduction 1

1.1 Mutual Information . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Quantum States, POVMs and Accessible Information . . . . . . . . 19

1.3 Variation of POVM . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2 Mathematical Tools 40

2.1 Resultant and Discriminant . . . . . . . . . . . . . . . . . . . . . . 40

2.2 Upper bounds on the number of roots of a function . . . . . . . . . 48

3 The Proof 52

3.1 Asymptotic Behavior . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2 Two Mixed States . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3 Two Pure States . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.4 One Pure State and One Mixed State . . . . . . . . . . . . . . . . . 68

iv



Contents v

3.5 The Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.6 Finding the Maximum . . . . . . . . . . . . . . . . . . . . . . . . 75

4 Outlook 78

A Variation Equations in Bloch Representation 85



Contents vi

Summary

In this thesis we prove the orthogonal measurement hypothesis for two states of

a qubit. The accessible information is a key quantity in quantum information and

communication. It is defined as the maximum of the mutual information over all

positive operator valued measures. It has direct application in the theory of chan-

nel capacities and quantum cryptography. The mutual information measures the

amount of classical information transmitted from Alice to Bob in the case that Al-

ice either uses classical signals, or quantum states to encode her message and Bob

uses detectors to receive the message. In the latter case, Bob can choose among dif-

ferent classes of measurements. If Alice does not send orthogonal pure states and

Bobs measurement is fixed, this setup is equivalent to a classical communication

channel with noise. A lot of research went into the question which measurement

is optimal in the sense that it maximizes the mutual information. The orthogonal

measurement hypothesis states that if the encoding alphabet consists of exactly two

states, an orthogonal (von Neumann) measurement is sufficient to achieve the ac-

cessible information. In this thesis we affirm this conjecture for two pure states of

a qubit and give the first proof for two general states of a qubit.
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Chapter 1

Introduction

Mutual information measures the amount of classical information that two parties,

Alice and Bob, share. Shannon showed in his seminal paper [1] that there always

exists an encoding scheme which transmits an amount of information arbitrarily

close to the mutual information per use of the channel. It was also mentioned by

Shannon that it is impossible to transmit more information than the mutual infor-

mation quantifies, only to be proved later [2]. An important extension to this setup

is to ask what happens if Alice does not send classical states to Bob, but uses states

of a quantum system instead. How much information do Alice and Bob share? This

question is at the heart of quantum information and a great amount of research is

devoted to it.

There are a number of possibilities to view this question. For instance we can

ask how much quantum information do both parties share. Or we can ask how much

classical information do Alice and Bob share if they use quantum states and mea-

surements for communication. In this thesis we are interested in the latter question.

Assume Alice encodes a message by sending a specific quantum state ρr for

1
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each letter in the alphabet of the message. The rth letter in the alphabet occurs

with probability tr(ρr) in the message. Bob sets up a measurement apparatus to

determine which state was sent, described by a positive operator valued measure

(POVM).

Alice and Bob’s situation can be described by a joint probability matrix. The

mutual information of the joint probability matrix tells us how much classical infor-

mation on average is transmitted to Bob per transmitted state [1, 3], when Alice and

Bob use an appropriate encoding and decoding scheme. If we assume the states to

be fixed, Bob can try to maximize the information transmitted by choosing a POVM

that maximizes the mutual information. This defines an important quantity; the so

called accessible information,

Iacc = max
{Πk}

I({ρr},{Πk}), (1.1)

where the maximum is taken over all POVMs and I denotes the mutual information.

To actually transmit this amount of information, the (Shannon-) encoding scheme

has to be adjusted as well.

The question which POVM maximizes the mutual information, was raised by

Holevo in 1973 [4], and is in general unanswered and usually addressed numeri-

cally [5, 6, 7]. Even the simpler question of how many outcomes are sufficient is

unanswered. It has been shown [8] that an orthogonal (von Neumann) measure-

ment, is in general not sufficient. Levitin [9] conjectured in 1995 that if Alice’s

alphabet consists of n states and n is smaller or equal to the dimension of the un-

derlying Hilbert space, an orthogonal measurement is sufficient. If so, the number

of outcomes would be equal to the dimension of the Hilbert space. This conjecture
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in general does not hold as shown by Shor [10]. A well known class of counter

examples, given by states representing the legs of a pyramid, is discussed in de-

tail by Řeháček and Englert [11]. In the same paper Shor reported that Fuchs and

Peres affirmed numerically that if the alphabet consists of two states the optimal

measurement is an orthogonal measurement. This is the orthogonal measurement

conjecture. For two pure states it was proved to be true in arbitrary dimensions by

Levitin [9].

This conjecture has important experimental and theoretical implications. In an

experiment, orthogonal measurements are generally easier to implement than arbi-

trary generalized measurements. From a theoretical point, knowing the accessible

information is crucial to determine the C1,1-channel capacity [1] and for security

analysis using the Csiszár-Körner theorem [12], for example the thresholds for an

incoherent attack on the Singapore protocol [13] are obtained by determining the

accessible information. Also part of the security analysis of the BB84 protocol for

incoherent attacks relies on this conjecture [14]. Work has been done under the as-

sumption that this conjecture is true [15]. In the sequel we will prove this conjecture

for two states of a qubit.

This thesis is organized as follows, in section 1.1 we introduce the mutual infor-

mation from the physical motivation of how much information can be transmitted.

We have another brief look at the mutual information from the point of view of key-

sharing of two parties, which is important in the modern view of security analysis.

A few well known and essential mathematical properties are derived in this sec-

tion as well. In the next section, section 1.2, we will introduce the quantum set-up

and review some important theorems about the accessible information in this case.
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The following section 1.3 is concerned with the variation of the mutual information

with respect to the POVM. In the subsequent sections certain crucial features of the

derivative of the mutual information are derived which allow us to prove the or-

thogonal measurement conjecture. In the appendix we will show how the variation

equations can be derived by using a Bloch-representation of the states and POVM.

Usually the Bloch-representation has advantages in dealing with qubits, but for the

problem at hand it is surprisingly not the case.

1.1 Mutual Information

In this thesis mutual information is a fundamental quantity. We start in this chapter

with a rather informal introduction to the physical and informational motivation

of the mutual information. The results are well known and can be found in any

standard textbook, e.g. [3].

The mutual information arises from the question, how much information can

be sent through a noisy memoryless channel from A to B. The basic situation is

depicted in figure 1.1.

Transmitter Receiver DestinationSource
Channel

Figure 1.1: Transmitting a message from Alice to Bob through a channel

Considering a binary noisy channel, we have the following situation depicted in

figure 1.2
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A B
0

1

0

1

ε

ε

0

1

Figure 1.2: Bit-flips in a binary noisy channel

So this channel can be described by the conditional probability matrix

p( j|r) =

(1− ε0) ε0

ε1 (1− ε1)

 ,

where ε0 denotes the probability of a zero bit to flip to a one, and ε1 the probability

of the reverse case.

This determines the probability of Bob to receive outcome j under the condition

that Alice sent the letter r. A channel is called symmetric if ε0 equals ε1. If the

probabilities of the letters of the source are fixed to pr we can define the joint

probability matrix by

pr j = pr p( j|r).

To see how much information is emitted, the idea is to look at long strings of letters

instead of single letters. Assume the source giving an uncorrelated string of letters

with fixed probabilities. Strings of length N will follow a binomial distribution

P(r) =
(

n
r

)
pr

1 pn−r
0 ,
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where P(r) denotes the probability of having exactly r ones in a string of n charac-

ters. For large values of n, P(r) can be approximated by a normal distribution

P(r)≈ 1
2πn p0 p1

exp
(
−(r−n p1)2

2n p0 p1

)
.

From the normal distribution we can see that, if n grows large, the distribution peaks

sharply around its maximum; implying that a relative small slice contains almost

the whole weight of the distribution for n growing large.

Following Shannon in his seminal paper [1] we ask the question, which se-

quences are typical, i.e. appear with overwhelming probability. For this we split

the message into independent blocks with each block of size n. Each block is called

a sequence. If we assign the values 0 and 1 to each of the letters, we can ask how

many different sequences are in a typical block. We are interested in the random

variable X ,

X =
n

∑
j=1

X j,

where each random variable X j is independent and with probability p0 gives zero

and with p1 gives one.

We have

〈X〉= n p1, var(X) = 〈(X−〈X〉)2〉= n p0 p1.
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It is known from Chebyshev’s inequality that

P(|X−〈X〉| ≥ nε)≤ p0 p1

nε2 =: δ,

with ε being the relative deviation of the number of ones from the expected value.

This inequality tells us that for any given, small, deviation ε we can find a (large)

length n such that the probability of finding a sequence outside the typical sequences

can be made arbitrary small.

So for given δ and given ε we get the minimum length n

n =
δε2

p0 p1

of a sequence such that with probability (1− δ) the number of ones in a sequence

only deviates by nε from the expected value. The question is how many typical

sequences are there for given ε.

The total number of sequences is given by

N(total) = 2n.

The number typical sequences is given by the sum of the possibilities

N(typical) =
n(p1+ε)

∑
k=n(p1−ε)

(
n
k

)
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which can be estimated, in case p1 < (1
2 − ε), to lie between the following bounds:

2nε

(
n

(p1− ε)n

)
< N(typical) < 2nε

(
n

(p1 + ε)n

)
.

If p1 is greater than (1
2 + ε) we have the same inequality inverted. If p1 is exactly

one-half N(typical) becomes arbitrarily close to N(total). This exhausts all possi-

bilities, since ε can be chosen to be arbitrarily small.

We can use Stirling’s series,

logn! = n log n−n+
1
2

log(2πn)+O(n−1)

to approximate the binomial coefficient to get

log2

(
n

p1 n

)
=

1
log2

(
−n p1 log p1−n p0 log p0−

1
2

log(2π p0 p1 n)+O(n−1)
)

For large n we can approximate the binomial coefficient by

(
n

p1 n

)
≈ 2nH2(p1)− 1

2 log(2π p0 p1 n),

where H2(p1) denotes the binary entropy of the source, i.e.

H2(p) =−(p log2 p+(1− p) log2(1− p)) .

For convenience we drop the −1
2 log(2π p0 p1 n) term, it grows slower than order of

n and will not contribute in the final result.



1.1. Mutual Information 9

We have

2nH2(p1−ε)+log2(2nε) < N(typical) < 2nH2(p1+ε)+log2(2nε),

and for small ε we will reach

N(typical)≈ 2nH2(p1)+log2(2nε).

This shows how much information is contained in the source. If we would imagine

to enumerate (which is hard to do in practice) all the typical sequences we would

need m-bits with

m = nH2(p1)+ log(2nε)

to distinctively label the sequences, plus a few codes to signalize non-typical se-

quences. To determine the amount of information per original bit we need to divide

by the total number n of bits in a sequence, which gives

C = H2(p1)+
log(2nε)

n
≈ H2(p1)

for large n. The amount of information is therefore given by the entropy of the

source. This is a well established result in information theory.

Since we intend to send this information through our noisy channel we have

to consider what happens to our typical sequences. Any typical sequence of Alice

becomes, in the overwhelming majority of cases, a typical sequence, or close to

one, on Bob’s side, with a different probability distribution though.
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We would like to know how much of this information can be extracted by Bob.

In the case of a noisy channel there is a probability of a one flipping to a zero and

vice versa. This means that Alice’s typical sequences will be mapped to different

typical sequences on Bob’s side. In the presence of noise, these sequences on Bob’s

side overlap and it is not possible for Bob to determine accurately which sequence

was send by Alice. The trick is Alice chooses a limited set of codewords which

are separated far enough (in the sense of Hamming-distance) such that Bob can (in

almost all of the cases) unambiguously determine which codeword was sent. This

is illustrated in figure 1.3. To how many possible sequences does a typical sequence

of Alice spread?

Let us label the possibility for a bit flip by

ε0 = p(1|0), ε1 = p(0|1).

Since Alice has most likely p0 ·n zeros in her sequence, there will be

(
p0 n

ε0 p0 n

)
≈ 2 p0nH2(ε0),

combinations with flips from zero to one and

(
p1 n

ε1 p1 n

)
≈ 2 p1nH2(ε1),

flips from one to zero. The total number of combinations is given by the product

N(sequences spread)≈ 2n(p0 H2(ε0)+p1 H2(ε1)).
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A B

Figure 1.3: Codewords from Alice’s side mapped to different codewords
on Bob’s side due to channel noise; blue color indicating an example set
of codewords Alice chooses

The number of typical sequences on Bob’s side is then given by

(
n

(ε0 p0 +(1− ε1) p1) n

)
≈ 2nH2(ε0 p0+(1−ε1)p1),

This implies that the number of states Alice can safely choose to transmit to

Bob is given by

N(transmit) =
N(typical Bob)

N(sequences spread)
≈ 2n(H2(ε0 p0+(1−ε1)p1)−p0 H2(ε0)−p1 H2(ε1))

= 2 nI({pr j)}

with I({pr j}) the mutual information of the joint probability distribution

pr j =

(1− ε0) p0 ε0 p0

ε1 p1 (1− ε1) p1
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Explicitly the mutual information is given by

I({pr j}) = ∑
r, j

pr j log
(

pr j

pr·p· j

)
(1.2)

with marginals

p· j := ∑
r

pr j, pr· := pr = ∑
j

pr j.

So the amount of information transmitted per bit sent is given by the mutual

information. This derivation works in more complicated cases with more input and

outputs on Alice and Bobs side, and gives the same equation as in equation 1.2 with

an adjusted range for the indices.

For a given channel p( j|r), the maximization of the mutual information over all

possible probabilities on Alice’s side gives the classical channel capacity:

Cclassical = max
{pr}

I({pr p( j|r)}).

It is an interesting question, what can be considered ‘mutual’ in the mutual in-

formation. It is obvious that the definition for the mutual information only depends

on the joint probability, it is symmetric if we exchange the roles of Alice and Bob.

We will now look at the mutual information from the point of key sharing using a

common source, which gives another operational meaning to the mutual informa-

tion.

Consider the following scenario, depicted in figure 1.4, which is common in se-

curity analysis for quantum key distribution. A common source delivers sequences
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to Alice and Bob. Let’s assume that this happens without any eavesdropping. The

question we can ask now, is how long a secret key can Alice and Bob create by only

using a public channel and not revealing any (useful) information about the key by

using the channel.

Source

Alice BobPublic Channel

Figure 1.4: A common source for random, correlated data for Alice and
Bob

The idea is a small variation to the idea laid out before. Alice and Bob agree

on a number of different encoding schemes beforehand. Each typical sequence on

Alice’s side is part of exactly one encoding scheme, and the number of scheme is

equal to the spread due to the noise. Each encoding scheme is chosen to be optimal

in the sense of the transmission of signals above. Figure 1.5 shows the situation.

At each time the common source sends a sequence to Alice and Bob, Alice

publicly announces into which group it fell on her side. A third party which listens

to the public channel can gain no information about the content of Alice and Bob’s

shared string. This scheme was suggested in [16], and is called reconciliation. In

the end, Alice and Bob share a common key of the length of the mutual information

of the source, but note as outlined some information has to be directly transmitted

by classical communication between Alice and Bob to achieve this.

After these physical interpretations of the mutual information we will look at

more mathematical properties of the mutual information in the remainder of this
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A B

Figure 1.5: Alice announces which encoding scheme to use after each se-
quence received from the common source, depicted by the different colors

section.

The mutual information is non-negative and only zero if the joint probability

matrix factorizes. This, and the way to prove it is well known. It can be seen by

observing that (− log) is a strictly convex function, this implies

I = ∑
r, j

pr j log
pr j

pr·p· j
= ∑

r, j
pr j(− log)

(
pr·p· j

pr j

)

≥− log

(
∑
r, j

pr·p· j
pr j

pr j

)
=− log(1) = 0.

Equality holds iff for all non-zero elements of pr j

pr j

pr·p· j
= 1.
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This means that the probabilities factorize

pr j = pr· p· j.

It is quite interesting to note at this point that zero mutual information is stronger

than the covariance to be zero, which usually is called uncorrelated. The following

gives an example

pr j =
1
8

1 1 2

0 3 1


with the random variables taking value in 0,1 on Alice’s side and 0,1,2 on Bobs

side. The covariance is defined by

cov(X ,Y ) := 〈(X−〈X〉)(Y −〈Y 〉)〉= 〈X Y 〉−〈X〉〈Y 〉

which is in this case

cov(X ,Y ) =
5
8
− 1

2
· 5

4
= 0.

The joint probability matrix does not factorize, which can be seen from the zero in

the lower left entry of the matrix.

The important result by Davies [17] states that if Bob merges two outcomes, in

general he loses information.

Theorem 1 (Davies [17]). Let pr j be a probability matrix, and p̃r j be given by

replacing two columns of pr j with one column representing their sum. For the
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mutual information this implies

I(p̃r j)≤ I(pr j) (1.3)

with equality if and only if the two columns are proportional to each other.

Proof. Label the two columns j,k and expanding both sides, we are left to show

∑
r

((
pr j + prk

)
log

pr j + prk

p· j + p·k
− pr j log

pr j

p· j
− prk log

prk

p·k

)
≤ 0. (1.4)

Each term in the bracket can be rewritten as

prk

(
xr log

(
1+ 1

xr

1+ y

)
+ log

(
1+ xr

1+ 1
y

))
(1.5)

with

xr =
pr j

prk
, y =

p·k
p· j

. (1.6)

To show that this term is always non-positive, we observe that the term is zero for

xr = 1/y, and the derivative with respect to xr is given by

prk log
1+ 1

xr

1+ y
(1.7)

which is positive for xr < 1/y and negative for xr > 1/y. So each term in (1.4) is

non-positive, and zero only if the columns are proportional.

This theorem can also be understood as a special case of the statement that

the mutual information is a convex function in the outcomes on Bob’s side, more

precisely
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Theorem 2. Assume we have two probability distributions p1
r j and p2

r j which have

the same marginal probabilities on Alice’s side, i.e. p1
r· = p2

r·, then

pλ
r j = λ p1

r j +(1−λ) p2
r j, 0≤ λ≤ 1

is a probability distribution and

I(pλ
r j)≤ λ I(p1

r j)+(1−λ) I(p2
r j).

For more than two joint probability distributions we have for any probability distri-

bution ql and joint probability distributions pl
jk

I

(
∑

l
ql pl

r j

)
≤∑

l
ql I
(

pl
r j

)
,

under the assumption all the probability distribution have the same marginal dis-

tributions on Alice’s side.

Proof. One of the proofs for this statement was presented by Řeháček et. al. in [5].

One has to show that the second derivative with respect to λ is always non-negative,

which can be seen by calculating

dI(pλ

rk)
dλ

= ∑
r,k

(
p1

rk− p2
rk
)

log

(
pλ

rk

pλ
r·p

λ

·k

)
= ∑

r,k

(
p1

rk− p2
rk
)

log

(
pλ

rk

pλ

·k

)
,

d2I(pλ

rk)
dλ2 = ∑

r,k

(
p1

rk− p2
rk
)( p1

rk− p2
rk

pλ

rk

−
p1
·k− p2

·k
pλ

·k

)

= ∑
r,k

(
p1

rk− p2
rk
)( pλ

·k(p1
rk− p2

rk)− pλ

rk(p1
·k− p2

·k)

pλ

rk pλ

·k

)
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= ∑
r,k

(
p1

rk− p2
rk
)( p2

·k(p1
rk− p2

rk)− p2
rk(p1

·k− p2
·k)

pλ

rk pλ

·k

)

= ∑
r,l,k

(
p1

rk− p2
rk
)( p2

lk p1
rk− p2

rk p1
lk

pλ

rk pλ

·k

)
.

The trick is now to multiply the denominator and the first factor by pλ

lk, thereby

making the fraction anti-symmetric in r, l, and then use the anti-symmetry on the

first factor, i.e.

d2I(pλ

rk)
dλ2 = ∑

r,l,k
pλ

lk
(

p1
rk− p2

rk
)( p2

lk p1
rk− p2

rk p1
lk

pλ

lk pλ

rk pλ

·k

)
= ∑

r,l,k
p2

lk p1
rk

(
p2

lk p1
rk− p2

rk p1
lk

pλ

lk pλ

rk pλ

·k

)

= ∑
r,l,k

(p2
lk p1

rk− p2
rk p1

lk)
2

2pλ

lk pλ

rk pλ

·k
≥ 0. (1.8)

The second statement follows simply by induction.

We would like to see as well when (1.8) can be zero. For this to happen each

term must vanish individually, i.e.

(p2
lk p1

rk− p2
rk p1

lk) = 0.

Assume that p2
lk or p1

lk is non-zero for one value of l, it follows that the two columns

must be proportional.

We note theorem 1 can be obtained by choosing a second distribution p2
jk with

the two columns in question exchanged and setting λ to one half. We also note that

merging equivalent columns does not change the mutual information.
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1.2 Quantum States, POVMs and Accessible Infor-

mation

In this section we will introduce communication using quantum states and mea-

surements. Since we are interested in quantum information, let us have a look at

the following scenario.

Alice wants to send her message to Bob by encoding the letters of her alpha-

bet using quantum states. A quantum state ρ is described by a complex positive-

semidefinite operator on a finite dimensional complex Hilbert-space H with unit

trace, i.e.

∀ψ ∈H : 〈ψ|ρ |ψ〉 ∈ [0,∞), tr(ρ) = 1.

Positive-semidefiniteness implies the operator is hermitian. A state is called pure if

there exists a vector ψ such that ρ = |ψ〉〈ψ| .

Alice can prepare states (for example using the polarization degree of freedom

of photons or the spin degree of freedom of electrons) at will and send them to Bob.

After receiving a state from Alice, Bob can choose a measurement to acquire infor-

mation about the received state. Since quantum mechanics is a probabilistic theory,

Bob will get one of his outcome with a well-defined probability. These measure-

ments are modeled by POVMs (positive operator valued measures). A POVM is

defined as a collection of n positive semidefinite operators Π = {Π j} fulfilling the

conditions

Π j ≥ 0, ∑
j

Π j = I, (1.9)
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where I denotes the identity operator. The elements of the POVM are called out-

comes. Each individual measurement gives exactly one outcome, i.e. ‘one click’ in

one of the outcomes of the ideal measurement apparatus (assuming perfect detec-

tors). The probabilities of the frequencies of the outcomes are given by the mutual

trace,

p(ρ, j) = tr(ρΠ j).

And the condition for the Π j to form a POVM translates to p being a probability

distribution, i.e.

p(ρ, j)≥ 0, ∑
j

p(ρ, j) = 1.

A very special kind of measurement is called von Neumann or orthogonal measure-

ment. In this case, all the outcomes obey the following relation

Πl Π j = δl, j Πl, for all l, j.

Historically this was introduced by John von Neumann [18] in terms of self-adjoint

operators. In the traditional setup our collection of operators Π would be given by

the projectors of the spectral-decomposition of a self-adjoint operator.

Now, since Alice wants to encode her message she translates every letter of her

string labeled by r to exactly one state ρr. In the following we will absorb the
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probabilities with which Alice sends the states in the trace of the state, i.e.

tr(ρr) = pr

These states are now sent to Bob. Only in rare cases, i.e. when Alice sends orthog-

onal states, Bob can infer exactly which state was send by Alice. In the other cases

we have to look at the joint probability matrix

pr j = tr(ρr Π j).

This can be viewed as a classical noisy channel, with conditional probabilities

p( j|r) =
pr j

pr

where p( j|k) denotes the probability that Bob received outcome j under the con-

dition that Alice sent state k. Observe that the order of the indices is reversed

compared to the joint probability matrix.

If we restrict ourselves to transmission of classical information, we know from

section 1.1 how much information can maximally be transmitted. This amount is

given by the mutual information,( we repeat here due to its importance and usage

in the remainder of this thesis).

I({ρr},{Π j}) = ∑
r, j

pr j log
(

pr j

pr· p· j

)
,
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with marginals

p· j = ∑
r

pr j, pr· = ∑
j

pr j.

Let us assume that the states sent by Alice and their probabilities are fixed. If

Bob wants to improve the transmission rate, Bob will aim to choose the best mea-

surement with respect to the mutual information. A measurement which achieves

the maximum of the mutual information is called an optimal measurement and the

maximum of the mutual information called the accessible information,

Iacc({ρr}) := max
{Πk}

I
(
{ρr},{Π j}

)
.

Immediately the question arises, is there always an orthogonal measurement among

the optimal measurements? The answer to this is in general ‘no’. It has been con-

jectured though, that if Alice uses only two states, it is indeed the case. This is

called the orthogonal measurement conjecture.

Conjecture 1 (orthogonal measurement conjecture). Let ρ0 and ρ1 be states on a

finite dimensional Hilbert space. There exists an orthogonal measurement Π j such

that the mutual information is equal to the accessible information, i.e.

I({ρ0,ρ1},{Π j}) = Iacc({ρ0,ρ1}).

In this thesis we will prove this conjecture to be true, for states with at most a

two-dimensional joint support.

For now, we continue by reviewing some of the known results about the mutual
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and accessible information in the quantum case.

Holevo showed [19] that the mutual information is always bounded by the so

called Holevo quantity or Holevo χ function,

Iacc({ρr})≤ S
(

∑
r

ρr

)
−∑

r
tr(ρr)S

(
ρr

tr(ρr)

)
= χ({ρr}),

where S denotes the (von Neumann) entropy of the state, i.e.

S(ρ) =−tr(ρ log(ρ)).

Holevo [20], in the general case, and Hausladen et.al [21], in case of pure states,

showed that this quantity can be achieved asymptotically if Bob is allowed to per-

form collective measurements on all the states sent to him by Alice. This is different

from our current setup in which Bob can only probe each state individually.

The determination of the accessible information and the Holevo quantity are

a sub-problem of the more general problem of channel capacities. A channel for

quantum states is described by a completely positive super-operator

(L⊗ Id)(ρ)≥ 0,

for all states ρ and all d, where Id denotes the identity in d dimensions. For the

channel to be lossless we have to have

L†(I) = I.

Where L† denotes the adjoint of L with respect to the Hilbert-Schmidt inner product.



1.2. Quantum States, POVMs and Accessible Information 24

For a given channel L we can define the following capacities

C1,1 = max
{ρr}

Iacc({L(ρr)})

C1,∞ = max
{ρr}

χ({L(ρr)})

For practical, experimental, implementations, the first quantity is highly relevant,

since large collective measurements are extremely difficult to perform. Both quan-

tities are important for theoretical considerations as well. A tremendous amount

of work went into the question if the C1,∞ quantity is additive for tensor product

channels; a conjecture which has been disproved only recently by Hastings [22].

Theorem 1 from the previous section allows us to show that an optimal POVM

can be reached by using rank-1 outcomes. More generally, if we restrict ourself to

outcomes chosen from a compact set, an optimal POVM can be reached by using

extremal states of the set only.

Theorem 3. Let M be a compact subset of positive n×n operators, then a POVM

which maximizes the mutual information with the outcomes of the POVM restricted

to M, can be chosen such that all outcomes are extremal points of M.

Proof. Take any POVM which consists of elements of M, any non extremal out-

come can be written as a convex sum of extremal points in M, i.e.

Π j = ∑
l

ql Ξ
l
j.

If M were convex, this is part of the Krein-Milman theorem. Since we do not require



1.2. Quantum States, POVMs and Accessible Information 25

M to be convex, we have to work slightly harder. We have

M ⊆ hull(M) = hull(ex(hull(M))) = hull(ex(M)),

where hull denotes the convex hull, and ex denotes the extremal points of a set. The

first equality follows from the Krein-Milman theorem.

Stringing all these extremal outcomes together creates a new POVM, and theo-

rem 1 immediately completes the proof.

If there exists a basis such that each state of a collection of states has a real ma-

trix representation in this basis, we say that the states are real. If Alices states are

real, any complex POVM can be transformed into a real one giving the same prob-

abilities with the same number of outcomes, as the following theorem by Sasaki

et.al. [23] shows

Theorem 4 (Sasaki et.al. [23]). Let ρ be a state with real matrix representation and

Ξ be an n-outcome POVM, then Π j = Re(Ξ j) defines a real POVM with the same

probabilities for its outcomes.

Proof. To see that Π j are positive operators we first note that the complex conjugate

of a positive operator is positive as well, hence the real part is the sum of two pos-

itive operators, therefore positive. Since the identity matrix is real the new POVM

will sum up to the identity as well. The probabilities are equal since

tr(ρΞ j) = ∑
kl

1
2
(ρkl +ρlk)Ξlk

j = ∑
kl

1
2

ρkl(Ξlk
j +Ξ

kl
j )

= tr
(

1
2

ρ(Ξ j +Ξ
∗
j)
)

= tr(ρΠ j).
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Note that in this case , the complex POVM might consist of pure states, while

the constructed real one will have in general a higher rank in each outcome. An

example of this was given by Suzuki et.al. in section 6.4 of the paper [6].

For clarifying the structure of POVMs it is useful to look at it in the following

way. Let Π j be a POVM with all outcomes non-vanishing. We can normalize the

outcomes of the POVM, i.e. define

Π̂ j =
Π j

tr(Π j)
, µ j :=

tr(Π j)
d

. (1.10)

In this case the condition for the POVM to sum up to identity becomes the state-

ment that the trace-normalized identity is a convex combination of the normalized

outcomes,

∑
j

µ j Π̂ j =
I
d
,

and performing the trace on both sides shows that µ j is a probability measure.

∑
j

µ j = 1, µ j > 0 for all j

Therefore the identity is in the convex hull of the normalized states. This obser-

vation, made by Davies, allows us to use a modified version of Caratheodory’s

theorem to show the following lemma, which will allow us to prove an important

theorem found by Davies and sharpened for real states by Sasaki et al..

Lemma 5. Let H be a d-dimensional Hilbert space, and Π an n-outcome POVM
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with distinct outcomes. For Π to be an extremal POVM the number of non vanishing

outcomes is limited to d2 if H is a complex space, and limited to d(d +1)/2 if it is

a real space.

Proof. The space in which the normalized POVM live in is the convex set of all

positive operators with trace one. This is a subset of a D dimensional real affine

vector space, with D = d2− 1 in the complex case and D = d(d + 1)/2− 1 in the

real case. Take any POVM {Π j} with N > D + 1 non vanishing elements, define

the normalized operators and probabilities

Π̂ j =
Π j

tr(Π j)
, µ j :=

tr(Π j)
d

.

Fixing the first element Π̂1, the difference vectors are linearly dependent, i.e.

the equation
N

∑
j=2

β j(Π̂1− Π̂ j) = 0 (1.11)

has nontrivial solutions for β j. Assigning β1 =−
N
∑
j=2

β j, we get

N

∑
j=1

β j Π̂ j = 0,
N

∑
j=1

β j = 0 (1.12)

We can add any multiple of the β j to the weights of our normalized POVM to create

new weights

µ̃±j = µ j ±αβ j (1.13)



1.2. Quantum States, POVMs and Accessible Information 28

which will still sum up to identity, i.e.

∑
j

µ̃±j = 1.

To maintain non-negativity of the new probability measure we set

α := 1/max
j

{
|β j|
µ j

}
, (1.14)

which keeps the µ̃±j non-negative, since

µ̃±j ≥ 0 ⇔ 1
α
≥∓

β j

µ j
.

With this we can define two new POVMs, Π̃
±
j whose outcomes are defined as

Π̃
±
j := µ̃±j d Π̂ j .

To check that these are POVMs, we note

∑
j

Π̃
±
j = ∑

j
d
(
µ jΠ̂ j±αβ j Π̂ j

)
= I+0

and

Π̃
±
j = µ̃±j d Π̂ j ≥ 0

since µ± ≥ 0.
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Observing that our original POVM is a convex combination of two POVM,

Π j =
1
2

Π̃
+
j +

1
2

Π̃
−
j (1.15)

shows that any POVM with more than D+1 outcomes cannot be extremal.

The following theorem goes back to the work of Davies [17] and was extended

to the real case by Sasaki, Barnett, Jozsa,Osaki and Hirota in [23].

Theorem 6 (D-SBJOH). Let H be a d-dimensional Hilbert space, an optimal

POVM Π can be chosen to consist of rank-1 outcomes and the number of out-

comes can be limited to d2 if H is a complex space, and limited to d(d +1)/2 real

outcomes if the states have a mutual real matrix representation.

Proof. In case the states have a real mutual matrix representation we can limit our-

self to real POVMs due to theorem 4.

From theorem 3 we can always restrict ourself to POVMs whose outcomes are

rank-1. The set of rank-1 outcome POVMs is a compact, but not in general convex.

It is convex in the probabilities introduced in 1.10. The mutual information takes

its maximum at the extremal points of this set. From the previous lemma and its

proof, we see when the number of outcomes exceeds d2 or d(d +1)/2 it cannot be

extremal.

The idea of the proof of theorem 4 can be generalized. Assume we have a

superoperator L, such that the states are eigenstates of this operator with eigenvalue

one, i.e.

L(ρr) = ρr.
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This implies that the joint probability matrix is invariant as well, and

pr j = tr(ρr Π j) = tr(L(ρr)Π j) = tr(ρrL†(Π j)), (1.16)

where L† denotes the adjoint of L with respect to the matrix scalar product. In

the (rare) case where L† maps every POVM to another POVM, we can restrict our

search to POVMs where each outcome is an element of the image of L†. In the

above example L was given by a projection to the real parts of the matrix, L is

hermitian if its domain is restricted to the space of hermitian matrices.

The following shows that an optimal POVM for commuting states is von Neu-

mann, which is an expected result.

Theorem 7. An optimal POVM for mutually commuting states ρi is given by a von

Neumann measurement which is diagonal in an eigenbasis of the states.

Proof. Choose a basis which diagonalizes the states. Define a projector L onto the

diagonal. It is clear that the image of L is convex and its extremal states are pure

states which already implies that one optimal measurement is orthogonal.

A physically intuitive but less trivial result is, that if the states can be mutually

decomposed into block diagonal matrices, an optimal POVM can be constructed

from an optimal POVM of the independent blocks.

Theorem 8. Assume we have states ρl which are written as block diagonal matri-

ces, and we know for each block a POVM which maximizes the mutual information.

Denote the number of blocks is by M, label the outcomes by Πm
j , where j labels the

outcome and m labels the block and dm denotes the dimension of block m. Then an
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optimal POVM is given by stringing all the outcomes together in one POVM, i.e.

{Πtotal} :=
[
m
{0(Dm−1)⊕Π

m⊕0(DM−Dm)}.

Where 0(n) denotes the zero matrix of dimension n and

Dm :=
m

∑
j=1

d j.

Proof. Choose a basis such that the matrix representation of the states is block

diagonal. Define L as the projector on these blocks. The image of L is convex and

closed. Since L can be written as

L(ρ) = ∑
k

P†
k ρPk,

with Pk as the orthogonal projection on the subspace of the kth block, we have that

L† preserves positivity of the outcomes and since

L† = L, L†(I) = ∑
k

P†
k Pk = I,

it maps POVMs to POVMs. The extremal states of the image of L are pure states

each of which are invariant under exactly one projection, and annihilated by all the

other projections. The only possibility for a pure state to be block diagonal is to be

zero in all of the blocks but one.

It is also important to get two trivial cases out of the way now. It is clear that

if the probability p1 = 0 then no information can be transmitted and the mutual
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information is zero. Also, if the two states are proportional to each other the mutual

information is zero. In the rest of this thesis we will not deal with these trivial cases.

1.3 Variation of POVM

We will use the Naimark extension to define our variation of the POVMs. The

following theorem gives us an orthogonal extension of every POVM:

Theorem 9 (Naimark). For any POVM, Π, acting on a Hilbert space H there exists

an Hilbert space H̃ ⊇ H and an orthogonal projector P : H̃ 7→ H , and a set of

orthogonal measurements Π̃ such that

Πi = P Π̃i P

and the dimension of H̃ can be chosen to be the sum of the rank of the outcomes of

Π.

Proof. To prove the theorem, we take all outcomes to be pure, otherwise we can

separate them into new, pure outcomes, and define an n×m -matrix A, by writing

the states as

Πi = |qi〉〈qi| , Ai j = 〈ei|q j〉,

where |ei〉 denotes an orthonormal basis of H . The summing to identity condition

of the POVM translates to

δk, j = 〈ek|∑
l

Πl |e j〉= ∑
l

AklA∗jl =
(

AA†
)

k j
,
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where the star denotes complex conjugation of complex numbers.

This implies all the rows of A are orthonormal, which allows us to extend the

matrix to a square-unitary matrix, by completing the rows to an orthonormal basis.

The columns found here are the Naimark-extension and the projector is given by

projecting on the first n components.

This allows us to define a variation of a POVM, in case the POVM is given

by rank-1 states; we extend it to an orthonormal basis, use an infinitesimal unitary

rotation and project back on the original Hilbert-space, i.e.

δ | j〉= δP | j̃〉= d
dt

Pexp(iHt) | j̃〉= iPH | j̃〉

= iP∑
m
|m̃〉〈m̃|H | j〉

= i∑
m
|m〉εm j, ε

∗
m j = ε jm

δpr j = δ〈 j|ρr | j〉= ∑
m

(
−i〈m|ε∗m jρr | j〉+ i〈 j|εm jρr |m〉

)
=−2∑

m
Im
(
〈 j|ρr |m〉εm j

)
.

We can look at the stationary points of the mutual information

δI = ∑
r, j

δpr j log
pr j

p· j

=−2 ∑
r, j,m

Im
(
〈 j|ρr |m〉εm j

)
log

pr j

p· j
.
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For each pair of outcomes (k, l) we can set εm j for {k, l} 6= {m, j} to zero, except

for εkl = i
2 and εlk =− i

2 . Explicitly, in three dimensions the matrices are

(k, l) = (1,2) : ε =
1
2


0 i 0

−i 0 0

0 0 0



(k, l) = (1,3) : ε =
1
2


0 0 i

0 0 0

−i 0 0



(k, l) = (2,3) : ε =
1
2


0 0 0

0 0 i

0 −i 0

 .

These matrices are equal to minus one-half of the imaginary Gell-Mann matrices.

This gives us the following set of variations

δ(k,l)I = ∑
r

ℜ

[
〈k|ρr |l〉 log

(
prk

p·k

)
−〈l|ρr |k〉 log

(
prl

p·l

)]
. (1.17)

From now on we will focus on the case of two states of a qubit.

Lemma 10. Let ρ1 and ρ2 be two states of a qubit. It is always possible to find

a basis such that both states have a real matrix representation. The accessible

information can be reached with a measurement consisting of three real rank-1

outcomes.

Proof. Diagonalize one of the states, say ρ1. The state ρ2 has in general the follow-
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ing matrix representation

ρ2 =

a b

b̄ c

 ,

with a,c real numbers. The following unitary matrix transforms ρ2 into a real matrix

and keeps ρ1 invariant,

U =

 b
|b| 0

0 1

 ,

i.e. U† ρ2U is real. From theorem 6 follows the rest of the statement.

Specifying equation (1.17) to two states in a real representation we get

δ(k,l)I =
2

∑
r=1
〈k|ρr |l〉 log

(
prk

prl

p·l
p·k

)
. (1.18)

Here k and l run from one to three. Since we are looking for a stationary point of

the mutual information we are interested in the zeros of this function

δ(k,l)I = 0. (1.19)

The function (1.18) is always well-defined if none of the states are pure. In case

at least one of the states is pure we will show that this function is still continuous in

section 3.3 where we focus on pure states.

Since these sets are antisymmetric in k, l we get exactly three independent pairs.

Fix one of the directions, say |1〉, and one vector |0〉 orthonormal to |1〉 to complete
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a basis of our real Hilbert space. Any vector |n〉 can be expressed as

|n〉= β0(n) |0〉+β1(n) |1〉. (1.20)

We want to see what are the restrictions from these equations (1.19) on the vectors.

When β0 is zero the conjecture is trivially true, since the vector would be propor-

tional to |1〉. Observe that, the function (1.18) is homogeneous in the length of the

vectors and therefore it is always possible for the solutions of (1.19) to divide out

β0 6= 0 and restrict ourselves to |n〉= |0〉+ t |1〉 with t an arbitrary real number. We

get

δ(1,n)I = 〈1|(ρ1+ρ2) |1〉
2

∑
r=1

αrQ′r(t)log
Qr(t)

α1 Q1(t)+α2 Q2(t)
(1.21)

with

Qr(t) = t2 +2t
〈1|ρr |0〉
〈1|ρr |1〉

+
〈0|ρr |0〉
〈1|ρr |1〉

, αr =
〈1|ρr |1〉

〈1| (ρ1 +ρ2) |1〉
(1.22)

and prime denoting differentiation with respect to t. Introducing

ξr =
〈1|ρr |0〉
〈1|ρr |1〉

, ηr =
〈0|ρr |0〉
〈1|ρr |1〉

, (1.23)

the range for these variables is restricted due to positivity of the states to

0≤ ξ
2
r ≤ ηr ≤ ∞, 0≤ αr ≤ 1, r = 1,2, α1 +α2 = 1. (1.24)

Non-negativity of the states ρ1 and ρ2 is reflected in the non-negativity of the
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polynomials Q1 and Q2 as the computation of their discriminant shows

ξ
2
r −ηr =

(
〈1|ρr |0〉
〈1|ρr |1〉

)2

− 〈0|ρr |0〉
〈1|ρr |1〉

=− det(ρr)
〈1|ρr |1〉2

≤ 0 for r = 1,2.

In section 3.5 we will show that knowledge of the number of real roots of the

function 1.21 allows us to prove the conjecture. Since the function is transcendental,

analyzing its roots is not a straight forward task. We will develop some tools in the

next chapter.

In particular we will prove the following key theorem

Theorem 11. Each function defined by

f(α,ξ,η)(t) =
2

∑
r=1

αrQ′r(t) log
Qr(t)

α1Q1(t)+α2Q2(t)
(1.25)

with constraints given by

0≤ ξ
2
r ≤ ηr < ∞, 0≤ αr ≤ 1, r = 1,2, α1 +α2 = 1,

(ξ1,η1) 6= (ξ2,η2), (1.26)

and Qr(t) = t2 + 2 t ξr + ηr and Q′r(t) = 2(t + ξr), has at most two real roots. If

ξ1 = ξ2 and η1 6= η2 the function has exactly one real root. In case α1 = 1,0 or

(ξ1,η1) = (ξ2,η2) the function vanishes identically.

Proof. Here we will only consider the last two cases, all other cases will be proved

in the remaining part of this thesis. If α1 = 1,0 or (ξ1,η1) = (ξ2,η2) the function

vanishes obviously. In case η1 = η2 we have Q1 = Q2 +c or Q2 = Q1 +c for some

positive constant c. Here we consider the case Q1 = Q2 +c, the other case is shown
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by a similiar calculation. We have

f(α,ξ,η)(t) = Q′1(t) [α1 log(Q1)+α2 log(Q1 + c)− log(Q1 +α2 c)] ,

since Q′1 is an affine function it has at most one root. We show now that the term in

the bracket never vanishes, except for c = 0. For c = 0 the bracket vanishes. The

derivative of the term in the bracket w.r.t. c is

− cα1 α2

(Q1 + c)(Q1 +α2 c)

which is always negative.

The following lemma shows how the function transforms under affine transfor-

mations

Lemma 12. Define the following affine transformation

T (t) = at +b, a 6= 0,

we get for a transformed f

f(α,ξ,η)(T (t)) = a f(α,ξ′,η′)(t),

with

ξ
′
r =

ξr +b
a

, η
′
r = ξ

′
r
2 +

η−ξ2

a2 , r = 1,2.

The new variables fulfill the same constraint 1.24 as the original variables.
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This lemma will help us to find the number of zeros, by reducing the parameter

space.

The main idea for analyzing this class of functions is to look at the second

derivative in t which is a high-order rational function.

For calculating the derivatives we introduce the abbreviations

L := Q′1 Q2−Q′2 Q1, Qs := α1 Q1 +α2 Q2. (1.27)

For the first and second derivative with respect to t of f(α,ξ,η)(t) we get

f ′ = 2

(
2

∑
l=1

αl log
Ql

Qs

)
+α1α2

(Q′1Q2−Q′2Q1)
2

QsQ1Q2

f ′′ = α1α2
L

(Q1Q2Qs)2 P (1.28)

with

P = 3L′(Q1Q2Qs)− (Q1Q2Qs)′L. (1.29)

By simply counting we can see that the second derivative is a (8,12) rational func-

tion in t, i.e. has a eighth order polynomial in the numerator and a twelfth order

polynomial in the denominator. Luckily its structure is graceful and a full analysis

is possible. In the next chapter we will talk about the tool of the discriminant to

help us analyzing the term P.



Chapter 2

Mathematical Tools

In this chapter we will develop some mathematical tools which will be used in

the following chapter. We start with discussing the resultant and the discriminant of

polynomials, giving us tools to the determine how many roots a class of polynomials

has. In the succeeding section we develop some upper bounds on the number of

roots of continuous functions.

2.1 Resultant and Discriminant

In this section we introduce the discriminant and the resultant of of polynomials.

We restrict ourself to complex variables, so that every polynomial can be written as

a product of linear factors. For a more detailed account we refer to van der Waerden

[24]. At the end of the section we prove a key theorem, theorem 14, which will be

needed in the subsequent chapter.

40
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For a second order polynomial

p(x) = ax2 +bx+ c

the discriminant

∆ = b2−4ac

determines the number of real roots

∆


= 0 if p has exactly one real root

< 0 if p has no real root

> 0 if p has two real roots

In general the resultant of two arbitrary polynomial p(x) and q(x) of degree n

and m with coefficients a j and b j

p(x) =
n

∑
j=0

a jx j

q(x) =
m

∑
j=0

b jx j

is defined as the product of the differences of their roots, specifically

R[p,q] = am
n bn

m

n

∏
i=1

m

∏
j=1

(
pi−q j

)
,

where pi denotes the (complex) roots of p(x) and q j the ones of q(x). All roots

are counted with multiplicity. The square brackets indicate that R is a function on

polynomials. Observe that the resultant is symmetric in p and q, up to a possible
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minus-sign. The polynomials can be decomposed into linear factors,

q(x) = bm

m

∏
j=1

(
x−q j

)
.

By inserting the roots of one polynomial in the other one, it can be seen that the

resultant can be represented by the product of p evaluated at the roots of q,

am
n

n

∏
i=1

q(pi) = am
n

n

∏
i=1

(
bm

m

∏
j=1

(
pi−q j

))
= R[p,q]. (2.1)

From this definition it can be seen that the resultant is zero if and only if both

polynomials share at least one root.

The discriminant ∆ of a polynomial is given by the resultant of the polynomial

and its derivative

R[p, p′] = (−1)n(n−1)/2an ∆[p]. (2.2)

Using formula 2.1 we see that the discriminant is proportional to the product of the

square of the differences of the roots of the polynomial, i.e.

(−1)n(n−1)/2an ∆[p] = R[p, p′] = an−1
n

n

∏
i=1

p′(pi) = a2n−1
n

n

∏
j=1

∏
k 6= j

(
p j− pk

)
= a2n−1

n (−1)n(n−1)/2
n

∏
j=1

∏
k> j

(
p j− pk

)2
.

Therefore

∆[p] = a2n−2
n ∏

j<k

(
p j− pk

)2
. (2.3)
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If all roots of p are real the discriminant is non-negative. In the case where complex

roots are present the discriminant can be negative. There seems to be no easy way to

compute the discriminant since it uses the roots of our polynomial, which in general

cannot be determined if the degree of the polynomial exceeds four. Luckily there is

a different way of computing resultants and discriminants using determinants.

The following holds:

R[p,q] = det



an an−1 ... a1 a0 ... 0 0

0 an an−1 ... a1 a0 ... 0
...

bm bm−1 ... b1 b0 ... 0 0

0 bm bm−1 ... b1 b0 ... 0
...

0 ... 0 bm bm−1 ... b1 b0



m


n

. (2.4)

This matrix is called Sylvester matrix and it is an (m+n)×(m+n) quadratic matrix.

It is formed by writing the coefficient of the first polynomial in the first m rows, in

each row shifted by one column to the right. Afterwards the next n rows are filled

with the coefficient of the second polynomial, shifted as well. The determinant of

the Sylvester matrix gives the resultant of the two polynomials.

For a proof of equation (2.4) we refer to the literature, for example [24]. For our

purposes it is enough to show that both terms vanish for the same polynomials. The

direction that if the resultant vanishes, the determinant vanishes, is easy. Assume
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the resultant vanishes, i.e. p and q have a common root, say x. Form the vector

~v =



xn+m−1

xn+m−2

...

x2

x1

1


,

a direct computation shows that~v is in the kernel of the Sylvester matrix, therefore

the determinant vanishes.

The reverse statement is a little trickier to show. Assume that the determinant

is vanishing, this implies that the rows are linear dependent, i.e. there is a non-

vanishing vector ~w in the kernel of the transposed matrix. We can now form two

polynomials with degree m− 1 and degree n− 1 using the components of ~w as

coefficients

r(x) =
m

∑
j=1

w j xm− j

s(x) =
n

∑
j=1

wm+ j xn− j.

The equations for ~w in the kernel of the transposed matrix translate to

r(x) p(x) = s(x)q(x)

This is only possible if p(x) and q(x) have a common root, as can be seen by de-
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composing each side into products of their linear factor.

For illustration we look at an example with two quadratic polynomials

p(x) = (x− p1)(x− p2) = x2− (p1 + p2)x+ p1 p2

q(x) = (x−q1)(x−q2) = x2− (q1 +q2)x+q1 q2,

the Sylvester matrix of this system is given by

B =



1 −(p1 + p2) p1 p2 0

0 1 −(p1 + p2) p1 p2

1 −(q1 +q2) q1 q2 0

0 1 −(q1 +q2) q1 q2


and its determinant is equal to

det(B) = (p1−q1)(p1−q2)(p2−q1)(p2−q2) = R(p,q),

as expected.

Looking at the discriminant of a second order polynomial p,

p(x) = ax2 +bx+ c,
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gives us

∣∣∣∣∣∣∣∣∣∣
a b c

2a b 0

0 2a b

∣∣∣∣∣∣∣∣∣∣
=−ab2 +4a2 c =−a∆(p)

in agreement with the usual definition.

We like to examine the behavior of the discriminant of a polynomial when the

highest coefficient is set to zero. In this case the discriminant becomes a multiple

of the discriminant of the remaining polynomial, as shown in the next theorem

Theorem 13. Let p(x) be a polynomial of degree n with coefficients ai with dis-

criminant ∆n[p], q(x) the same polynomial with an set to zero and ∆n−1[q] the dis-

criminant of q(x). The following holds

lim
an→0

∆n[p] = a2
n−1∆n−1[q]

Proof. We see from equations (2.2,2.4) that

∆n[p] = (−1)n(n−1)/2× (2.5)
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 an−1 ... a1 a0 ... 0 0

0 an an−1 ... a1 a0 ... 0
...

n (n−1)an−1 ... a1 a0 ... 0 0

0 nan (n−1)an−1 ... a1 a0 ... 0
...

0 ... 0 nan (n−1)an−1 ... a1 a0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (2.6)

Expanding the determinant in the first column and setting an to zero we get

lim
an→0

∆n[p] = (−1)n(n−1)/2×
{

1× (−1)n−2(n−1)an−1 Res[q,q′]

+(−1)n−1 n×an−1 Res[q,q′]
}

= (−1)n(n−1)/2× (−1)n−1 an−1Res[q,q′].

Using equation (2.2) again, we get

lim
an→0

∆n[p] = (−1)n(n−1)/2× (−1)n−1 a2
n−1 (−1)(n−1)(n−2)/2

∆[q]

= a2
n−1 ∆[q]

After this introduction and the previous result we are prepared to show the main

result of this section:

Theorem 14. Let G be a family of real valued polynomials with formal degree n,
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i.e.

G : Rm→ R[x],z 7→ Gz =
n

∑
k=0

g(z)kxk

which is continuous in the coefficients of x, and D[g] a connected domain of G for

which the discriminant of G does not vanish. The number of roots of Gz is constant

on each of the following domains

D0[g] = {z ∈ D|g(z)n = 0},

D1[g] = D\D0,

and the number of roots on D1 is one more than the number of roots on D0.

Proof. Assume that the discriminant does not vanish. This implies that the polyno-

mials on D1 do not have any double root. Since the roots of the polynomials depend

continuously on its coefficients this implies that the polynomials of each connected

component of D1 have the same number of real roots. The non-vanishing of the

discriminant on D0, where the highest coefficient vanishes, implies, due to theorem

13, that the second highest coefficient is non-zero and that no double root occurs.

This fixes the number of real roots on each connected component of D0, and there

is exactly one root less which went off to infinity.

2.2 Upper bounds on the number of roots of a func-

tion

Here we introduce some theorems and lemmata which will help us limit the number

of real roots of a class of functions, using information from the first and second
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derivative. We start with the well-known Rolle theorem

Theorem 15 (Rolle). Let f be a continuous, real valued function on the closed

interval [a,b] with a,b∈R∪{−∞,+∞}, a 6= b and differentiable on (a,b). If f (a) =

f (b) then there exists a c ∈ (a,b) such that the derivative of f is zero at this point,

i.e. f ′(c) = 0.

In case the function is not differentiable but still continuous the following ver-

sion holds

Lemma 16. Let f be a real valued, continuous non-constant function on the interval

[a,b] with a,b ∈ R̄ = R∪{−∞,+∞} and a 6= b. If f (a) = f (b) there exists a c ∈

(a,b) such that c is an extremal point of f , i.e. at c is a maximum or minimum.

Proof. Continuous functions map compact sets to compact sets. Let a,b ∈ R̄ and

a 6= b, M := [a,b] is a compact set, either in the topology of R if a,b 6= ∞, or in

the two point compactification of R in the other case. The function f maps M

to a compact subset of R, so its image is bounded and closed, therefore attains a

maximum and a minimum. At least one of these extrema has to be attained between

a and b, otherwise the function would be constant.

Lemma 16 implies theorem 15 immediately.

This allows us to limit the number of zeros of a function by the number of zeros

of its derivative.

Lemma 17. Let M = [a,b], M = (a,b), M = (a,b] or M = [a,b) with a,b ∈ R̄ and

f ∈ C1(M,R) with its derivative having a finite number of roots. The number of
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roots of f is at most one more than the number of roots of the derivative

| f−1(0)| ≤ |( f ′)−1(0)|+1,

where | · | denotes the number of elements of a set.

Proof. According to theorem 15 between two successive roots of f must be one

root of the derivative.

In case that the function is not everywhere differentiable we can substitute ex-

trema instead of roots of the derivative.

Lemma 18. Let M = [a,b], M = (a,b), M = (a,b] or M = [a,b) with a,b ∈ R̄ and

f ∈ C0(M,R) with finite number of extrema N. The number of roots of f on the

interval is at most one more than the number of extrema

| f−1(0)| ≤ N +1.

where | · | denotes the number of elements of a set.

Proof. Same proof as lemma 17 except that lemma 16 is used instead of theorem

15.

In a later section we will be mostly concerned with functions which converge to

zero at infinity.

Lemma 19. Let f ∈C1(R) which converges to zero at plus and minus infinity and

its first derivative has a finite number of roots. Then we have

| f−1(0)| ≤ |( f ′)−1(0)|−1
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on R.

Proof. Extend f to the two point compactification of R, apply lemma 17 and sub-

tract one root for plus infinity and one for minus infinity.



Chapter 3

The Proof

In the following section we will present the proof of the orthogonal measurement

conjecture for states of a qubit. The main focus is on the variation of the mutual

information, given in equation (1.18) and the associated function fα,ξ,η(t) given in

equation (1.25). We start in the next section by analyzing the asymptotic behavior

of fα,ξ,η(t) and its derivatives. We prove theorem 11 for two mixed states in section

3.2, for two pure states in section 3.3, and for one mixed and one pure state in

section 3.4. In section 3.5 we present the proof of the orthogonal measurement

conjecture for two states of a qubit. We conclude this chapter with a short discussion

about the von Neumann measurement that maximizes the mutual information.
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3.1 Asymptotic Behavior

To complete our analysis, we have to look at the asymptotic behavior of the class

of functions (1.25). We observe

lim
t→∞

Qr

Qs
= 1, r = 1,2,

and the terms in front of the logarithm going to infinity, so we have to expand the

logarithm to find the right asymptotic behavior. We have

log
(

Q1

Qs

)
= log

(
Q1

α1Q1 +α2Q2

)
=− log

(
1+α2

(
Q2−Q1

Q1

))
≈−

(
α2

Q2−Q1

Q1
−

α2
2

2

(
Q2−Q1

Q2

)2
)

+O(t−3)

= 2α2(ξ1−ξ2)
1
t

+O(t−2)

log
(

Q2

Qs

)
≈−

(
−α1

Q2−Q1

Q2
−

α2
1

2

(
Q2−Q1

Q1

)2
)

+O(t−3)

= 2α1(ξ2−ξ1)
1
t

+O(t−2)

Therefore

lim
t→±∞

f (t) = lim
t→±∞

2 t
(

α1 2α2(ξ1−ξ2)
1
t

+α2 2α1(ξ2−ξ1)
1
t

)
+O(t−1) = 0,

(3.1)

and for the first and second derivative of f given by

f ′ = 2

(
2

∑
l=1

αl log
Ql

Qs

)
+α1α2

(Q′1Q2−Q′2Q1)
2

QsQ1Q2
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f ′′ = α1α2
L

(Q1Q2Qs)2 P. (3.2)

We immediately see that the first and second derivative of f converge to zero at plus

and minus infinity by observing that Q1Q2Qs is a sixth order polynomial and LP at

most an eighth order polynomial. We have

lim
t→±∞

f ′(t) = 0, (3.3)

lim
t→±∞

f ′′(t) = 0.

To get a better feeling for the functions involved we will now examine their

asymptotic behavior in greater detail.

For the remainder of this section we will use a rescaled and translated version

of f with ξ1 = 0 and η1 = 1, and label the rescaled and translated values of ξ2 by ξ

and η2 by η. As usual α1 = 0,1 is excluded.

Expanding the logarithms in function (1.25) to fourth order in t around infinity

leads to

f (t)≈ 2
3

α2 α1 ξ
(
(4−2α1 )ξ2−3η+3

) 1
t2 −α2 α1

[
(8α

2
1 +24α2)ξ

4 (3.4)

+(12α1 η−24η+12α2)ξ2 +3(η−1)2] 1
3 t3 +O(t−4)

In most cases the function approaches zero at infinity as t−2, in some cases the

prefactor of t−2 will vanish and the function will behave asymptotically as t−3. We

now show that if the coefficient of t−2 vanishes it is not possible for the coefficient

of t−3 to vanish as well.
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Figure 3.1: Function f with parameters α1 = 1/2, ξ = 1 and various val-
ues for η as indicated in the graph. Insets show two magnified region.
Observe the transition of asymptotic behavior at η = 2 (i.e. maroon col-
ored curve).

The first term of (3.4), proportional to t−2, is zero iff

ξ = 0, or α1 =
4ξ2−3η+3

2ξ2 . (3.5)

In the case that ξ equals zero, the prefactor of (3t)−3 which is the second term in

(3.4) reads

−α2α1 (η−1)2 ,

and this being zero implies that the two states are proportional to each other.
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In case ξ 6= 0, the constraint on α1 to be bounded by zero and one turns into:

η ∈ (1+
2
3

ξ
2,1+

4
3

ξ
2), (3.6)

keeping in mind the general constraint of η≥ ξ2. Substituting α1 of equation (3.5)

into the coefficient proportional to t−3 of (3.4), gives

− 1
12ξ4

(
2ξ

2−3η+3
) (
−4ξ

2 +3η−3
) (

8ξ
4−12ηξ

2 +3η
2−6η+3

)
. (3.7)

Ignoring the numerator, the second factor is equal to −α1 so it is strictly negative.

Notice that the first factor of (3.7) is strictly negative as well, since η is greater than

1+ 2
3ξ2 (3.6), giving

2ξ
2−3η+3 < 2ξ

2−3−2ξ
2 +3 = 0.

For the third and last factor, we have

8ξ
4−8ηξ

2−3η+3−4ηξ
2 +3η

2−3η < 8(ξ2−η)ξ
2−3η+3 < 0,

by realizing that the last three terms of the first line sum up to η times negative α1

and η≥ 1 because of (3.6).

3.2 Two Mixed States

In this section we deal with the case that both states are mixed, which avoids us

having to consider any poles in the first- or second derivative of f(α,ξ,η)(t) with
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respect to t. Since the number of roots in t is translation and scaling invariant, it is

always possible to set ξ1 = 0 and η1 = 1. It will be convenient to label the translated

and rescaled values of ξ2 simply as ξ and η2 as η .

The second derivative of f(α,ξ,η)(t) is, as stated in equation (1.28),

f ′′ = α1α2
L

(Q1Q2Qs)2 P,

with

L = 2(ξ t2 +(η−1) t−ξ),

and P

P = 3L′(Q1Q2Qs)− (Q1Q2Qs)′L

from equation (1.29) is given by a sixth order polynomial in t

P =
6

∑
l=0

Pl(ξ,η,α1) t l (3.8)

with

P6 =−2
(
3(η−1)+2(α1−2)ξ2) , (3.9)

P5 =−4ξ
(
α1−8+(2−α1)η−4α2ξ

2) ,
P4 = 2(1+η−2η

2 +4(9+2η)ξ2

+α1((η−1)2−2(7+4η)ξ2)),
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P3 =−8ξ
(
α1(η+η

2−2+8ξ
2)−1−η(4+η)−8ξ

2) ,
P2 = 2

[
(η−1)(η(2+η)+α1(1−η

2))

+2(4+7α1 +18α2η)ξ2] ,
P1 =−4ξ(α1 +2η−9α1η−8α2)η2−4α2ξ

2),

P0 =−6(α1(η−1)−η)(η−1)η+4(2α2η+α1)ξ2.

We will give the result of the discriminant of this polynomial in the next lemma

20; it is helpful though, to introduce the ‘defect’, i.e. the difference between η and

ξ2, and denote it by X

X := η−ξ
2 > 0, (3.10)

which is positive because of the constraints (1.26).

Lemma 20. The discriminant ∆(P, t) of P is non-vanishing for all 0 ≤ α1 ≤ 1 and

in the case

ξ
2 > 0 and X > 0

or (3.11)

ξ
2 = 0 and 0 < X 6= 1.

Proof. The discriminant of P is given by

∆(P, t) =−589824X
[
(1−X−ξ

2)2 +4ξ
2]7

×
{[

α1(α2ξ
2 +1)+α2X

]}[
Y (α1,X ,ξ2)

]2
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All factors except the last are obviously nonzero, so we take a closer look at the last

factor, which is a fourth order polynomial in X ,

Y (α1,X ,ξ2) =
4

∑
k=0

Yk(α1,ξ
2)Xk. (3.12)

We are now going to show that each of the coefficients is non-negative and at least

one of them is non-vanishing, giving us a positive polynomial. The coefficient

Y4 = α
2
2(16α2 +α

2
1) (3.13)

is zero for α1 = 1 and positive otherwise. The coefficient

Y3 =−4(α2)2(3α
2
1 +4α1−8)ξ2

+4α2
(
−3α

3
1 +67α

2
1−196α1 +136

)
is affine in ξ2. To show that this coefficient is greater than zero, we use that

−3α
2
1−4α1 +8≥−3 ·12−4+8 = 1

and

−3α
3
1 +67α

2
1−196α1 +136 >−3+66α

2
1−198α1 +136

= 66(α2
1−3α1 +2)+1 = 66(2−α1)(1−α1)≥ 1,
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and we get

Y3 ≥ 4α2 (α2ξ
2 +1)≥ 0

with Y3 = 0 iff α1 = 1.

Coefficient Y2: Y2 is a quadratic polynomial in ξ2 :

Y2 = 2(−13α
4
1 +34α

3
1−21α

2
1−8α1 +8)ξ4

−2(122α
4
1−636α

3
1 +914α

2
1−384α1−16)ξ2

−2
(
13α

4
1−26α

3
1 +405α

2
1−392α1−8

)
in which all terms can be shown to be non-negative.

Coefficient Y1:

Y1 =−4α1(−4(1+ξ
2)3 +α1(1+ξ

2)2(−71+11ξ
2)

+α
3
1(−3+61ξ

2−61ξ
4 +3ξ

6)−2α
2
1(29−37ξ

2−61ξ
4 +5ξ

6))

= 4α1

(
(−3α

3
1 +10α

2
1−11α1 +4)ξ6 +(61α

3
1−122α

2
1 +49α1 +12)ξ4

+(−61α
3
1−74α

2
1 +131α1 +12)ξ2 +3α

3
1 +58α

2
1 +71α1 +4

)
,

which is a third order polynomial in ξ2. All the coefficients are positive for α1 ∈ (0,1).

Coefficient Y0: The last coefficient is given by

Y0 = α
2
1(1+ξ

2)2

×
[
ξ

4(α2
2 +ξ

2 2(1−α
2
1 +6α1α2)+1+α

2
1 +14α1

]
≥ 0.
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This shows that the discriminant is non-zero.

To determine the number of roots we need to look at one polynomial for conve-

niently chosen parameters. Choose

ξ = 2, X = 1, α1 =
1
2
. (3.14)

This choice lets the highest coefficient (3.9) of the polynomial P (3.8) vanish, and

gives us

P =−64(1+ t)(7+8t +8t2 +4t3 + t4)

=−64(1+ t)
((

(t +1)2 +2
)
(t +1)2 +3

)
(3.15)

which has exactly one real root.

Lemma 21. The class of polynomial P defined in (3.8) has at most two real roots

for α1 ∈ [0,1] and X and η constraint as in (3.11).

Proof. Choosing the parameters such as in equation (3.14) gives us a polynomial

with one real root, as is shown in equation (3.15). Since the parameters were chosen

such that the highest coefficient of the polynomial was vanishing and the discrimi-

nant of the polynomial is always non-zero we use theorem 14 to infer that P has at

most two real roots.

We are now prepared to prove theorem 11, which we restate here for mixed

states.
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Theorem 22. The class of functions

f(α,ξ,η)(t) =
2

∑
r=1

αrQ′r(t) log
Qr(t)

α1Q1(t)+α2Q2(t)
(3.16)

with parameters constraint by

0≤ ξ
2
r < ηr < ∞, 0 < αr < 1, r = 1,2, α1 +α2 = 1.

(ξ1,η1) 6= (ξ2,η2), (3.17)

has at most two real roots.

Proof. The second derivative of f(α,ξ,η)(t) with respect to t is given by

f ′′ = α1α2
L

(Q1Q2Qs)2 P,

and Q1,Q2 and Qs remain positive since ηr > ξ2
r for r = 1,2. L is a second order

polynomial and has therefore at most two real roots. From lemma 21 we know that

P has at most two real roots. Since f and f ′ converge to zero (3.1,3.3) at plus and

minus infinity we can apply lemma 19 twice

| f−1(0)| ≤ |( f ′)−1(0)|−1≤ |( f ′′)−1(0)|−2≤ 2.

This completes the proof of theorem 11 for mixed states.
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3.3 Two Pure States

If one or two states are pure our life gets surprisingly more difficult due to possible

discontinuities and non-differentiability. Here we have a closer look at our function

(1.18).

The function δ(k,l)I is given by

δ(k,l)I = 〈k|ρ1 |l〉 log
(

p1k

p1l

p·l
p·k

)
+ 〈k|ρ2 |l〉 log

(
p2k

p2l

p·l
p·k

)
. (3.18)

This function is well-defined, if p1k, p1l , p2k and p2l are each non zero. It is not

possible for p1k and p2k to be simultaneously zero, otherwise the states would be

proportional to each other. The same reasoning applies to p1l and p2l . Also, since

|l〉 and |k〉 are assumed to be distinct, p1k and p1l cannot vanish at the same time,

and vice versa for p2k and p2l . Therefore at most either p1k and p2l is zero, or p1l

and p2k.

For continuity it is sufficient to show that each term is continuous by itself, in

particular that

g( |k〉, |l〉) := 〈k|ρ1 |l〉 log〈k|ρ1 |k〉

is continuous on the line defined by 〈k|ρ1 |k〉 = 0 with |k〉 6= 0, and has a limit of

zero.

Since ρ1 is non negative, this implies ρ1 |k〉= 0. We write

ρ1 = p1 |ψ〉〈ψ|
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and have

g( |k〉, |l〉) = p1〈k|ψ1〉〈ψ1| l〉 log p1|〈k|ψ1〉|2

which is a composition of the continuous function

h(x,y) = xy log |x|2

and the scalar products with ψ1. Therefore the function is continuous, albeit it is

not everywhere differentiable.

We have

Lemma 23. In the case p1k is zero p2k has to be non zero and the variation of I

(1.18) is

δ(k,l)I = 〈k|ρ2 |l〉 log
(

1+
p1l

p2k

)
.

This expression is only zero if p2l is zero. The same statement holds if we reverse

the role of k and l, or switch ρ1 and ρ2.

For the rest of this section we only look at the case that p1k and p2k are both

non-zero. In this case we have

ξ
2
r = ηr, r = 1,2.

Giving us

Qr(t) = (t +ξr)2, r = 1,2.
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Set ξ2 = 0 by using translation invariance, and label the translated value of ξ1 by ξ.

We have for the first and second derivative of (1.25)

f ′(t) = 2

(
2

∑
l=1

αl log
Ql

Qs

)
+α1α2

(Q′1Q2−Q′2Q1)
2

QsQ1Q2

= 2

(
2

∑
l=1

αl log
Ql

Qs

)
+4α1α2ξ

2Q−1
s , (3.19)

f ′′(t) =−
2α1α2ξ3 ((α1−α2)t2 +2α1ξt +α1ξ2)

t (t +ξ)Q2
s

. (3.20)

The first derivative (3.19) has precisely two poles due to the argument of the

logarithm approaches zero. These poles are located at t = 0 and t =−ξ.

The denominator of the second derivative (3.20) has exactly two distinct simple

zeros, at t = 0 and t =−ξ. To see if the location of the poles can coincide with the

location of the roots of the numerator of (3.20), we define

h(t) := (α1−α2)t2 +2α1ξt +α1ξ
2,

and observe that

h(0) = α1ξ
2

h(−ξ) =−α2ξ
2,

which would imply ξ2=0 in the case of h vanishing at one of these points, which is

excluded since otherwise the states would be proportional to each other.

On a side note, we notice that there is a mild symmetry in the the parameters of

the function, the function with parameters ξnew =−ξ and αnew = 1−α is given by
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a simple translation in the t-variable by

fα,ξ(t−ξ) = f1−α,−ξ(t).

-30 -25 -20 -15 -10 -5 0 5 10 15 20
t
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0
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f(t)
f'(t)
f''(t)

Figure 3.2: Function f defined in (1.25) in blue, its first derivative in
black and its second derivative in green for α1 = 0.2 and ξ = 10. The
inset shows a magnified region.

The approach to infinity is given by

lim
t→±∞

f ′′(t) = 0sign(ξ(α2−α1)),

in case that α1 6= α2. In case that α1 = α2, we have

lim
t→±∞

f ′′(t) = 0∓sign(ξ).
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Since

h(0) = α1ξ
2 > 0 and h(−ξ) =−α2ξ

2 < 0

one of the zeros is between the poles and another (if it exists) outside.

Lemma 24. The derivative of f with respect to t has two poles and at most three

real roots.

Proof. From direct inspection we see that f ′ has one pole at t =−ξ and one at t = 0.

We know from the considerations above, that f ′′ has at most two real roots and two

poles at t =−ξ and t = 0, where exactly one root is between the poles and the other

root is outside if it exists. From (3.3) we know that f ′ converges to zero in the limit

of plus and minus infinity. From lemma 17 we know f ′ has at most two real roots

between the poles, and from the same lemma at most one outside the poles.

We are in good shape to prove theorem (11) in the case of two pure states, which

reads in this case

Theorem 25. The class of functions

f(α,ξ,η)(t) =
2

∑
r=1

αrQ′r(t) log
Qr(t)

α1Q1(t)+α2Q2(t)
(3.21)

with parameters constraint by

0≤ ξ
2
r < ∞, 0 < αr < 1, r = 1,2,

α1 +α2 = 1, ξ1 6= ξ2, (3.22)

and ηr = ξ2
r for r = 1,2, has at most two real roots.
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Proof. In this proof we work with the translated function f , i.e. we only need to

consider the case ξ2 = 0. The function f(α,ξ,η)(t) converges to zero at plus and

minus infinity. The function is continuous, and at the poles of its derivative has

values

f (0) =−2α1 ξ log(α1),

f (−ξ) = 2α2 ξ log(α2).

These are not maxima nor minima since the left and the right limit both converge

to minus infinity, i.e.

lim
t→−ξ±

f ′(t) =−∞,

lim
t→0±

f ′(t) =−∞.

With help of lemma 24 we see that f has at most three extrema and therefore by

lemma 18 at most two real roots.

3.4 One Pure State and One Mixed State

In this case, a similar analysis of continuity as in the case of two pure states holds.

Choose ρ1 to be pure. We have

ξ
2
1 = η1→ Q1 = (t +ξ1)2.
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Using translation and scale invariance, we can set

Q2 = t2 +1,

and get for the first and second derivative of (1.25), after labeling the translated and

rescaled value of ξ1 as ξ

L = 2(t +ξ)(1− tξ),

f ′(t) = 2

(
2

∑
l=1

αl log
Ql

Qs

)
+α1α2

(Q′1Q2−Q′2Q1)
2

QsQ1Q2

= 2

(
2

∑
l=1

αl log
Ql

Qs

)
+4α1α2(1− t ξ)2 Q−1

s Q−1
2 , (3.23)

f ′′(t) = 4α1α2
(1− tξ)P

Q2
2(t +ξ)Q2

s
,

P =
(
(2α1−1)ξ2 +3

)
t4 +2ξ

(
α1(ξ2 +1)+4

)
t3

+
(
α1(ξ4−1)+2(6α1 +1)ξ2 +2

)
t2

+2ξ
(
α1
(
5ξ

2−3
)
+4
)

t +α1

+ξ
2 (

α1
(
3ξ

2−2
)
+3
)
−1.

In this case we have one simple pole for the second derivative at t = −ξ and

an obvious zero at t = 1/ξ. Figure 3.3 shows f and its first derivative, while figure

3.4 shows the first and second derivative for illustration for one typical value of α1

and ξ. To see that the poles and the roots of f ′′ cannot coincide we evaluate for the

numerator of f ′′

(1+ξ
2)P(−ξ) =−α2

(
ξ

2 +1
)4
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which is strictly non zero.
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Figure 3.3: Function f defined in (1.25) in blue and its first derivative in
black for α = 0.2 and ξ = 10. The inset shows a magnified region.

The discriminant of P is

∆(P, t) =−48α2
(
ξ

2 +1
)6 (

α1ξ
2 +1

)
×
(
α

2
1 ξ

4 +α1(16−14α1)ξ2 +α
2
1 +16α2

)2

which is always smaller than zero. Setting α1 = 1/3 and ξ = 3 we get

P =
4
3
(
33t3 +62t2 +81t +76

)
= 44

(
t +

4
3

)((
t +

3
11

)2

+
191
121

)
(3.24)

which has exactly one real root. With help from the next lemma we conclude that

the second derivative f has at most three roots and one pole.
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Figure 3.4: First derivative of f shown in (3.23) in black and second
derivative in green for α = 0.2 and ξ = 10. The inset shows a magnified
region

Lemma 26. The class of polynomial P defined in (3.8) has at most two real roots.

Proof. Choosing the parameters α = 1/3 and ξ = 3 gives us a polynomial with one

real root, as is shown in equation (3.24). Since the parameters were chosen such

that the highest coefficient of the polynomial vanishes and the discriminant of the

polynomial is always non-zero we use theorem 14 to infer that P has at most two

real roots.

Lemma 27. The derivative of f has one pole and at most three real roots.

Proof. From direct inspection of equation (3.23) we see that f ′ has exactly one pole

at t = −ξ. We know from lemma 26 and the considerations above, that f ′′ has at

most three real roots and one pole at t =−ξ which cannot coincide with one of the
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roots. From equation (3.3) we know that f ′ converges to zero in the limit of plus

and minus infinity. Since our discussion does not change if we change t to −t we

are left with two cases.

1. All roots are on the right side of the pole. Considering the interval (−∞,−ξ)

there cannot be any roots due to lemma 17. Looking at the interval (−ξ,∞)

there are at most three roots due to the same lemma.

2. One root is on the left side of the pole. A similar analysis as in the previous

case shows that there are is at most one root on the left and two on the right

side of the pole.

Theorem 28. The class of functions

f(α,ξ,η)(t) =
2

∑
r=1

αrQ′r(t) log
Qr(t)

α1Q1(t)+α2Q2(t)
(3.25)

with parameters constraint by

0≤ ξ
2
r < ∞, 0 < αr < 1, r = 1,2, α1 +α2 = 1.

ξ1 6= ξ2, (3.26)

and ηr = ξ2
r for r = 1,2, has at most two real roots.

Proof. In this proof we work with the translated and rescaled function f , i.e. we

only need to consider with ξ2 = 0 and η2 = 1. From the preceding discussion we

see that
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The function f(α,ξ,η)(t) converges to zero at plus and minus infinity as shown in

3.1. Although f ′ has a pole at t =−ξ, f is finite and non zero at t =−ξ with value

f (−ξ) = 2α2 ξ log(α2).

This is not a maximum of minimum since the left and the right limit both converge

to minus infinity, i.e.

lim
t→−ξ±

f ′(t) =−∞.

Therefore f has at most three extrema and by lemma 18 at most two real roots.

3.5 The Proof

In this part we finally show our central result. Let us recall, the following equations

have to be solved simultaneously:

δ(1,2)I =
2

∑
r=1
〈1|ρr |2〉 log

(
pr1

pr2

p·2
p·1

)
= 0,

δ(1,3)I =
2

∑
r=1
〈1|ρr |3〉 log

(
pr1

pr3

p·3
p·1

)
= 0, (3.27)

δ(2,3)I =
2

∑
r=1
〈2|ρr |3〉 log

(
pr2

pr3

p·3
p·2

)
= 0.

From our previous analysis we know that if we keep one state fixed, we have at

most two solutions for the second state for each individual equation (plus the trivial

one that both vectors are proportional). It is important to note, that if any two
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rank-1 outcomes are proportional, the third one must be orthogonal to them to form

a POVM and our system would be equivalent to an orthogonal measurement.

One of the solutions can actually be found by hand, and it is given when both

logarithms vanish simultaneously. The argument of the logarithm has the peculiar

property that if one of them is one, the other one is as well,

p11

p12

p·2
p·1

= 1 ↔ p21

p22

p·2
p·1

= 1.

Theorem 29. If the alphabet consists of two states of a qubit, then every station-

ary point of the mutual information which is not a minimum, is a von Neumann

measurement.

Proof. Assume that the mutual information is stationary and that POVM is not von

Neumann. We start by analyzing the special case that p1k = 0, or p2k = 0 for

k = 1,2, or 3 which only happens if at least one of the states is pure. Say p11 = 0, it

follows from lemma 23 that p22 and p23 must be zero as well. This is only possible

if |3〉 is proportional to |2〉, which implies it must be an orthogonal measurement.

For all the other cases we can assume that prk 6= 0 for all r,k. Observe that in

(3.27) if one logarithm is zero, automatically the other is zero as well. Since |2〉

and |3〉 have to be distinct, Theorem 11 tells us that one of these states must set the

logarithm to zero, say |3〉. This means that

p·1 p13

p·3 p11
= 1 ↔ p21

p11
=

p23

p13
,

so outcome one and outcome three are equivalent. Since the same reasoning is

applicable to 〈2| instead of 〈1| in equations (1.19,1.21) we find that all outcomes
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are equivalent and we are in a minimum.

Corollary 30. The orthogonal measurement conjecture is true for all states ρ0 and

ρ1 if they can be mutually diagonalized apart from a qubit, i.e. if a basis exists such

that ρ0 is diagonal and ρ1 diagonal except on a two dimensional subspace.

In particular this includes the case that both states are states of a qubit.

Proof. Using theorem 8 we can build an optimal measurement by using optimal

measurements for the independent blocks. Theorem 7 tells us, that for the commut-

ing part an orthogonal measurement is sufficient. For the qubit part any maximum

must be a stationary point of the mutual information, and from theorem 29 we know

this is only possible for an orthogonal measurement.

3.6 Finding the Maximum

Now that the type of POVM which maximizes the mutual information is found,

we ask the question where this maximum is. Since the equation in question is

transcendental it is in general not possible to find analytical solutions. For special

cases a solution was found by Fuchs and Caves [25]. See also section 11.6.1 in

Suzuki et al. [6] about this matter.

Since we established that the optimal measurement is a von Neumann measure-

ment we have to look for the condition that the variation of the mutual information

(1.21) is zero at t = 0, i.e.

δI = 2
2

∑
r=1

αrξr log
(

ηr

α1η1 +α2η2

)
= 0.
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Let us express that in terms of the matrix coefficients

δI = 2
2

∑
r=1
〈1|ρr |0〉 log

 〈0|ρr |0〉
〈1|ρr |1〉

〈0|(ρ1+ρ2) |0〉
〈1|(ρ1+ρ2) |1〉

 . (3.28)

Parametrizing |0〉 and |1〉 by

|0〉=

1

s

 , |1〉=

 s

−1

 ,

we get for the right hand side of (3.28), assuming a real matrix representation

2
[
(s(ρ00

1 −ρ
11
1 )+(s2−1)ρ01

1 )×(
log
(

s2ρ00
2 −2sρ01

2 +ρ11
2

s2ρ00
1 −2sρ01

1 +ρ11
1

+1
)
− log

(
s2ρ11

2 +2sρ01
2 +ρ00

2

s2ρ11
1 +2sρ01

1 +ρ00
1

+1
))

+ρ1↔ ρ2] ,

where the upper indices denote the matrix element in the standard basis.

The structure of this function is quite complicated as figure 3.5 indicates. From

the graph we see that there are two maxima and two minima, which allows for more

roots according to our analysis. This situation can be traced back to the fact that

we did not normalize the outcomes |0〉 and |1〉, i.e. we are missing a factor of

(s2 +1)−1; if we include this factor the function does not have superfluous extrema.

Though, if we include this factor, multiple differentiation of the function does not

get rid of the logarithm. Our approach does not seem to be viable for this problem.

From numerical experiments we know that there do not exist more than two

solutions. Unfortunately this cannot be shown by our method, thus giving a clearer
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Figure 3.5: Variation of the mutual information for von Neumann mea-
surements as described in the text. Both states are pure and we have
p1 = 0.2, ρ00

1 = 0.1 and ρ00
2 = 0.6.

view on its limitations.

We close this chapter with a conjecture about the number of stationary points of

the mutual information when restricted to von Neumann measurements.

Conjecture 2. For two states of a qubit, there exists only two stationary points of the

mutual information if the the number of outcomes of the measurements is restricted

to two and both lie in the same plane as the states in the Bloch representation.

One of the stationary points is the global minimum and the other one is the global

maximum.



Chapter 4

Outlook

In this thesis we have proved the orthogonal measurement conjecture for states of

a qubit. This gives immediate rise to a couple of questions. Firstly, since the proof

has been very technical, the proof sheds not much light on the question why the

theorem is true. It almost seems accidental for the theorem to be true. We do not

believe in an accident for this case, so the question is, is there a simpler proof which

reveals more about the underlying structure of the problem? We were not able to

answer this question, but it could be that the following formula might give a hint to

the right direction

d
dt

(
α1 Q1 log

Q1

Qs
+α2 Q2 log

Q2

Qs

)
= f(α,ξ,η)(t).

The second question, is how to show only one maximum and one minimum

exists if we restrict ourselves to orthogonal measurements. This result would be

extremely valuable since it would allow to turn numerical results into rigorous esti-

mates. Also, it would allow us to conclude that the cases in the ‘solvable’ case are

78
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actually the true solutions.

The next question is if the conjecture is also true in case the states are qutrits

or qunits. It is illustrative to see where mimicking the proof for qubits fails in case

of qutrits. For two general states of a qutrit it is not always possible to choose a

common basis such that both states have a real matrix representation. Setting this

problem aside, and just assuming that both states are real, the D-SBJOH theorem

tells us we need at most d(d + 1)/2 outcomes, which in the case of qutrits means

six. The same equation as (1.18) can be derived, i.e.

δ(k,l)I =
2

∑
r=1
〈k|ρr |l〉 log

(
prk

prl

p·l
p·k

)
= 0.

But the parametrization of the vectors would be significantly different

|n〉= β0(n) |0〉+β1(n) |1〉+β2(n) |2〉.

Again, one of these parameters is superfluous, but the remaining parameters will

lead to a one-dimensional family of solution on a two-dimensional surface. In our

proof of the qubit case we had zero-dimensional solutions on a one-dimensional

curve, which allows us to use real analysis to determine the number of solutions

and then make statements about mutual roots of the equations. In the present case

we are in deeper trouble. A great deal of mathematical work has been devoted to

mutual roots of algebraic curves in the field of algebraic geometry, far less is known

about transcendental curves. This road does not seem to be feasible to follow.

In a broader perspective, this work is also a tiny step to the more general ques-

tion of how many outcomes do we need. In a setting with m-qunits, how many
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outcomes are sufficient to achieve the accessible information?

Lastly, but not least, we would like to state a conjecture, which might help to

proof the general orthogonal measurement conjecture and which would be paramount

for gaining confidence in numerical results. The question is, what if we vary the

allowed number of outcomes, if we are below the optimal number, we believe that

the accessible information is strictly increasing with the number of outcomes:

Conjecture 3. The maximal information is strictly increasing in the numbers of

outcomes for fixed states until the global accessible information is reached.

max
{Πi}i≤N

I = max
{Πi}i≤N+1

I→ max
{Πi}i≤N

I = Iacc

This would be an extremely convenient statement. The general problem for

large Hilbert-spaces is that the maximum number of outcomes according to the D-

SBJOH theorem increases with d2 so the total memory needed increases with d3 for

pure outcomes, and computation times usually scale worse. This conjecture might

also offer advantages for a general proof of the orthogonal measurement hypothesis.

With this we conclude this thesis. We hope reading it was as enjoyable as ob-

taining the result was, and that the reader might be able to contribute to these open

questions.
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Appendix A

Variation Equations in Bloch

Representation

In the following we will derive the variation equations (1.19) by using the Bloch-

representation for qubit states. In two dimensions we have the Pauli-matrices

σ1 =

0 1

1 0

 , σ2 =

0 −i

i 0

 , σ3 =

1 0

0 −1


These matrices are hermitian and trace-free. Together with the identity they form a

real basis of the space of all hermitian two-by-two matrices. Any state of a qubit ρ

can be expanded

ρ =
1
2

(I+ r1σ1 + r2σ2 + r3σ3) =:
1
2
(I+~r ·~σ),
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where~r denotes a real, three dimensional vector. The condition that states have unit

trace is already implemented. The positivity condition translates to

|~r| ≤ 1

and we have a pure state iff |~r| = 1. For a POVM we also use the Bloch vector

representation. We use a three rank-1 outcome POVM, which by the D-SBJOH

theorem (6) is sufficient. Define

Π1 := a(I+~n1 ·~σ) ,

Π2 := b(I+~n2 ·~σ) ,

Π3 := c(I+~n3 ·~σ) , a,b,c > 0.

For this to be a POVM the following has to hold

Π3 = I−Π1−Π2 = (1−a−b)
(

I− a~n1 +b~n2

1−a−b
·~σ
)

Where~n1 and~n2 denote unit vectors and

1−a−b≥ 0 and
∣∣∣∣a~n1 +b~n2

1−a−b

∣∣∣∣2 = 1

has to hold. The second condition is equaivalent to

2ab~n1 ·~n2 = 1−2a−2b+2ab. (A.1)



87

We also have for Π j to be a POVM

~n3 =−a~n1 +b~n2

1−a−b
.

The mutual information is given by

I = ∑
i, j

pi j log
pi j

p· j pi·

and its variation

δI = ∑
i, j

δpi j log
pi j

p· j pi·
= ∑

i, j
δpi j log

pi j

p· j

The joint probability matrix is given by

p11 = ap1(1+~r1 · ~n1),

p12 = bp1(1+~r1 · ~n2),

p13 = p1 (1−a(1+~r1 · ~n1)−b(1+~r1 · ~n2)) ,

p21 = ap2(1+~r2 · ~n1),

p22 = bp2(1+~r2 · ~n2),

p23 = p2 (1−a(1+~r2 · ~n1)−b(1+~r2 · ~n2)) .

We are using the method of Lagrange multipliers to implement the constraint (A.1).

The variation is restricted by

(b~n1 ·~n2 +1−b)︸ ︷︷ ︸
X

δa+(a~n1 ·~n2 +1−a)︸ ︷︷ ︸
Y

δb+abδ~n1 ·~n2 +ab~n1 ·δ~n2 = 0 (A.2)
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Observe, that

X = (1−2b)/(2a), Y = (1−2a)/(2b)

leading to

XY =
1
2

(~n1 ·~n2 +1) 0≤ XY ≤ 1.

For the unrestricted variation we would get

δI = δp11 log
(

p11

p·1

p·3
p13

)
+δp12 log

(
p12

p·2

p·3
p13

)
+δp21 log

(
p21

p·1

p·3
p23

)
+δp22 log

(
p22

p·2

p·3
p23

)
,

δaI =
(

p1(1+~r1 ·~n1) log
p11

p·1

p·3
p13

+ p2(1+~r2 ·~n1) log
p21

p·1

p·3
p23

)
δa,

δ~n1I = a
(

p1~r1 ·δ~n1 log
p11

p·1

p·3
p13

+ p2~r2 ·δ~n1 log
p21

p·1

p·3
p23

)
,

δbI =
(

p1(1+~r1 ·~n2) log
p12

p·2

p·3
p13

+ p2(1+~r2 ·~n2) log
p22

p·2

p·3
p23

)
δb,

δ~n2I = b
(

p1~r1 ·δ~n2 log
p12

p·2

p·3
p13

+ p2~r2 ·δ~n2 log
p22

p·2

p·3
p23

)
.

Solving the differential constraints (A.2) for δa and expressing δI, the restricted

variation is:

δI =
(

p1(1+~r1 ·~n2) log
p12

p·2

p·3
p13

+ p2(1+~r2 ·~n2) log
p22

p·2

p·3
p23

)
δb

−
[(

p1(1+~r1 ·~n1) log
p11

p·1

p·3
p13

+ p2(1+~r2 ·~n1) log
p21

p·1

p·3
p23

)
·
(

Y
X

δb+
ab
X

~n1δ~n2 +
ab
X

~n2δ~n1

)]
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+a
(

p1~r1 log
p11

p·1

p·3
p13

+ p2~r2 log
p21

p·1

p·3
p23

)
·δ~n1+

+b
(

p1~r1 log
p12

p·2

p·3
p13

+ p2~r2 log
p22

p·2

p·3
p23

)
·δ~n2. (A.3)

Define

~v := p1(~n1 +~r1) log

q11︷ ︸︸ ︷
p11

p·1

p·3
p13

+p2(~n1 +~r2) log

q21︷ ︸︸ ︷
p21

p·1

p·3
p23

, (A.4)

~w := p1(~n2 +~r1) log
p12

p·2

p·3
p13︸ ︷︷ ︸

q12

+p2(~n2 +~r2) log
p22

p·2

p·3
p23︸ ︷︷ ︸

q22

. (A.5)

Since the variations of n1 are restricted to orthogonal transformations, we have

δn1 = n1×δn.

So we get from setting the variation to zero and (A.3)

δ~n1 ·
(
~v−~v ·~n1

b
X

~n2

)
= 0, (A.6)

δ~n2 ·
(
~w−~v ·~n1

a
X

~n1

)
= 0, (A.7)

δb · (X~w ·~n2−Y~v ·~n1) = 0. (A.8)

To solve these equations we write

~v = v1~n1 + v2~n2, ~w = w1~w1 +w2~w2

applying (A.6) shows v2 = (~v ·~n1) b
X , substituting this and computing ~n1 ·~v = v1 +

~n1 ·~n2
~v1·~n1b

X , leading to v1 = (~v ·~n1)1−b
X . Now expanding ~w and applying (A.7) leads
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to w1 = (~v ·~n1) a
X , and computing ~w ·~n2 in conjuncture with (A.8) leads us to the

solution of these equations

~w =
~v ·~n1

X
(a~n1 +(1−a)~n2) , (A.9)

~v =
~v ·~n1

X
((1−b)~n1 +b~n2) . (A.10)

Observe the following:

(~n2 +~n3) ·~w = 0,

(~n1 +~n3) ·~v = 0,

(~n1 +~n2) · (~v−~w) = 0.

leading to

∑
j

p j
(
1+~n2 ·~n3 +~r j · (~n2 +~n3)

)
log
(

p j2

p·2

p·3
p j3

)
= 0, (A.11)

∑
j

p j
(
1+~n1 ·~n3 +~r j · (~n1 +~n3)

)
log
(

p j1

p·1

p·3
p j3

)
= 0, (A.12)

∑
j

p j
(
1+~n1 ·~n2 +~r j · (~n1 +~n2)

)
log
(

p j1

p·1

p·2
p j2

)
= 0. (A.13)

The following identity holds

〈1|ρ |2〉〈2|1〉= tr( |1〉〈1|ρ |2〉〈2|) =
1
8

tr((I+~n1 ·~σ)(I+~r ·~σ)(I+~n2 ·~σ))

=
1
4

(1+~n1 ·~n2 +~r · (~n1 +~n2)) ;

applied to (A.11,A.12,A.13) gives us (1.18) and (1.19).


