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Abstract

The decoupling technique was originally developed for information-theoretical pur-
poses. It describes the conditions under which the correlations in a bipartite state
disappear if one part undergoes an evolution separated from the other. In the past
years there has been enormous progress in understanding the foundations of statisti-
cal mechanics from first principles of quantum mechanics. By use of the decoupling
technique we are able to reproduce and generalize major results of this development
and to approach open problems.

As a first application of the decoupling technique we generalize the result of
[Popescu et al., Nat. Phys. 2, 754-758 (2006)] about the apparent validity of the
postulate of equal a priori probabilities to states which may be correlated to a
reference. We express it in a form which allows to apply recent results about random
two-qubit interactions. We give a criterion for the apparent validity of the postulate
which is tight up to differences between different entropy measures. Similarly, we
generalize the result of [Linden et al., Phys. Rev. E 79, 061103 (2009)] about the
independence of the temporal average of a quantum mechanical system of its initial
state to initial states which may be correlated to a reference.

We develop a criterion for whether a quantum-mechanical system has “forgotten”
about its initial state which is tight up to differences between different entropy mea-
sures. We find that comparing two local entropies of just one particular state tells us
whether generic initial states of the system have already evolved to the same state
or not. After developing new bounds on the times which are necessary for entropy
changes, we are able to provide lower bounds on the times which are necessary for
a system to become independent of its initial state. We discover an intimate con-
nection between a system becoming independent of its initial state and a loss of an
observer’s knowledge about the state of the system. As a further application of the
decoupling technique we find sufficient conditions under which a system stays close
to its initial state for all times, thereby extending the result of [Gogolin et al., Phys.
Rev. Lett. 106, 040401 (2011)].
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You should call it entropy, for two reasons. In the first place your
uncertainty function has been used in statistical mechanics under that
name, so it already has a name. In the second place, and more important,
no one really knows what entropy really is, so in a debate you will always
have the advantage.

John von Neumann
Suggesting to Claude Shannon a name for his new uncertainty function,
as quoted in Scientific American Vol. 225 No. 3, (1971), p. 180






Notation

General

log Binary logarithm

In Natural logarithm

C Complex numbers

c Complex conjugate of ¢ € C

Linear Algebra and Quantum Systems
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Linear Algebra and Quantum Systems; continued
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Chapter 1

Introduction

Consider filling a glass box with water from a freezing lake, closing it and putting
in on a table. Initially you have a mixture of ice and liquid water of different tem-
peratures in your box and the water molecules and ice blocks are moving around.
After some time, the movements come to a rest and - depending on the temperature
and pressure of the room in which the table stands - the ice blocks begin to melt or
the water begins to freeze. Finally, the contents of the box are in a state where no
further dynamics are observable.

While thermalization processes like this one are familiar to us from our everyday
life, understanding them from a microscopic point of view is far from trivial. We could
for instance try to comprehend how the final state, in which no further changes are
observable, depends on the initial state of the contents of the box and the room. Our
experience tells us that this final state only depends on some macroscopic properties
of the room (like its pressure and temperature) and that basically all initial states of
the room which share these macroscopic properties lead to the same final state. It
does not matter, for example, if there is a chair standing on the left hand side or on
the right hand side of the table. If the room is much larger than the box, the initial
temperature and phase of the contents of the box should not matter either. It will
matter, however, if there is an evacuated shell around the system preventing it from
thermally interacting with its environment. The initial state of the room also does
matter if there is a ticking bomb in it or a dog running against the table on which
the box stands. So there may be a fraction of (untypical) states of the environment
which have a large impact on the evolution of the system, besides imposing the
macroscopic parameters. If we want to claim something like almost all initial states
of the environment of a system which share the same macroscopic parameters will
eventually lead to the same state of the system we will have to be precise about what



we wean by “almost all”.

More importantly, a satisfying explanation of such thermalization processes should
not find and adjust statements like the above example about independence of the
environment ad hoc but should be able to derive them from a fundamental theory.
In this thesis we are concerned with processes which happen far below the speed of
light. The fundamental theory is therefore non-relativistic quantum mechanics as
developed in the first half of the twentieth century.

Attempts to understand how systems of many interacting particles behave are
in fact older than quantum mechanics. The central results of classical statistical
physics were derived in the nineteenth century and are based on classical Hamiltonian
dynamics. Classical statistical physics has produced many celebrated results and is
generally very well confirmed by experiment. Trying to understand such phenomena
directly from quantum mechanics may thus seem an unnecessarily ambitious goal.
Even worse, the unitary time evolution of quantum mechanics seems at first sight
to contradict irreversible processes like thermalization. This apparent contradiction
actually led to suggestions of modifying quantum mechanics (references are given in
[Gog10b]).

However, the foundations of many cornerstones of statistical physics like the
postulate of equal a priori probabilities, ensemble averages or the Second Law of
thermodynamics remained unclear in the classical framework troughout the twentieth
century. In the recent years there has been an enormous progress in understanding
statistical physics from first principles of quantum mechanics. Important instances
are [Tas98| (GMO02, (GLTZ06l, PSW06b, [LPSW09, [GMMO09, LPSW10l |[Gog10a, [Sholll
GMEII, RGE11]. We refer to [GoglOb] for an overview over major results of this
approach.

Key is the insight that the interaction of the system in question with its environ-
ment is crucial for understanding its thermalization. If the system is isolated, the
unitary time-evolution is unable to change the entropy of the system. An initial state
of the system with zero entropy (a “pure” state) will then stay so forever and not be
able to exhibit statistical properties. On the other hand, if the system is interacting
with its environment a feature of quantum mechanics called entanglement, which
may arise between the system and its environment, allows their joint pure state to
do so as long as one focuses on the system part of this state only. The apparent con-
tradiction between a quantum mechanical system approaching an equilibrium state
and the ongoing unitary evolution can be resolved if the system is in contact with a
much larger environment. The ongoing unitary evolution may then only change the
state of the environment and leave the system close to its equilibrium state for most
times.



In this thesis we bring the development which the above references stand for
together with techniques developed in quantum information theory in the second
half of the twentieth century and since. The most general way in which a quantum
mechanical state can influence another state (of the same system at some later time
or of another system) is mathematically described by a so-called quantum channel.
If we for example ask ourselves how the state of the system under interest depends at
a given time on the initial state of the environment it interacts with, this dependence
is described by such a channel. Our main tool in this thesis will be the decoupling
technique [Dup09, DBWRI10] which describes the effects the application of a channel
has.

Consider a bipartite quantum-mechanical state, that is, a state consisting of two
parts which are classically and/or quantum mechanically correlated. We consider
that we first apply a unitary to one part of the bipartite state and then input this
part of the state to a quantum channel. The decoupling technique provides conditions
for the channel output

a) being no longer correlated to (that is, being decoupled from) the other part of
the bipartite state and

b) being in a definite state which does not depend on the local input state or the
applied unitary but only on the channel.

This two predictions necessarily go hand in hand in the decoupling framework. By
use of the decoupling technique we are able to reprodue and extend major results
of the described approach [PSWO06b, LPSW09, (GME11]. When discussing how a
system becomes independent of its initial state or approaches a canoncial state this
references are solely concerned with the b) part of this predictions. We add to the
quantum mechanical system S of interest and the environment E with which it
interacts a third system R which we call the reference. The big picture is depicted
in Figure We imagine that the correlations between the reference and the initial
state describe the knowledge an observer has about the initial microstate. The a)
part then predicts decoupling between system and reference. We will see in several
instances how the interactions between S and E destroy the correlations which S
might have to an outside reference. So approaching a thermal state goes in our
description necessarily hand in hand with the loss of an observer’s initial information
about the microstate of the system. Precisely speaking, while at ¢ = 0 access to R
might allow an observer to gain information about S, this is no longer the case when
the system has thermalized.

As an example, let R be a thermometer which is used to measure the temperature
of S before S is put in contact with £. From the point of view of an outside observer
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Figure 1.1: At ¢ = 0 the system S is correlated to a reference R and put in contact
with an environment E. The interactions between S and E then destroy the correla-
tions between S and R, build correlations between S and E and leave S in a thermal
state. What is not depicted in this figure is that due to the unitary evolution of SE
the correlations between R and the joint system SFE are for all times of the same
strength as the initial correlations between R and S.



without access to R, this measurement leads to correlations between R and S. Having
access to the thermometer after the measurement process, that is, learning the initial
temperature of S, allows him or her to gain information about the microstate of S.
Once the system has thermalized, access to the thermometer which has measured
the initial temperature of S does no longer allow to gain any information about S.

Not only the consequences of decoupling involve the correlations between the ref-
erence and the system, these correlations themselves enter the condition for whether
decoupling occurs in the first place. In cases where the reference is a quantum mem-
ory, correlations between the reference and the initial state are possible which are
stronger than in cases where the reference is classical. Different initial correlation
strengths can provably lead to different predictions about the decoupling behavior
of the system under interest. There are cases in which a classical observer has lost
all his or her initial knowledge about the microstate of S, in contrast to an observer
with access to a reference which was quantum-mechanically entangled with the initial
state. This aspect is somewhat similar to the results of [{RARDV11, BCCRRI0].
In this references it is shown that the physics an observer with access to a quantum
memory witnesses is different from what a classical observer witnesses.

1.1 Overview

Our approach requires a considerable amount of technical ingredients. The subse-
quent three Chapters 2, 3 and 4 are dedicated to the development of the tools and
notation we apply in the thesis. In Chapter 3 we provide an introduction to the
smooth entropy calculus and in Chapter 4 to the decoupling technique. With this
tools at hand, strong theorems can be obtained with relative ease. While well-known
facts constitute most of the contenct of these three chapters, some results like the
chain rule Lemma or the converse to the decoupling theorem in the form of
Theorem were developed specifically for this thesis.

In [PSWO06D, LPSW09] it was shown how two corner stones of statistical me-
chanics, the postulate of equal a priori probabilities and thermalization, can be
understood in a quantum world. In Chapters 5 and 6 we reproduce and extend these
results by use of the introduced techniques. Notably we apply the results of [HLOY)
about random concatenations of two-qubit interactions

References like [LPSWO09, [LPSWT0, [Sholll [GMETI] are exclusively concerned
with long-term temporal averages and do not make statements about the state of
the system at a given time. Providing bounds on the time-scales on which thermal-
ization happens remains an open problem [LPSW10, [HGJ11]. If we incorporate the
temporal evolution into a quantum channel, the decoupling technique gives sufficient



and necessary conditions for the time a system needs to become independent of its
initial state. These conditions depend on how fast different entropy measures can be
changed. We will therefore first address this question in Chapter 7. In Chapter 8 we
see that independence of the initial state of the environment is not a matter of time-
scales at all. Combining the conditions obtained from the decoupling theorem and
our results from Chapter 7 allows us to derive in Chapter 9 a rigorous lower bound
on the time which is necessary for independence of the initial state of the system.
Since initial state independence is a necessary condition for thermalization, this also
lower-bounds the system’s thermalization time. We discuss possible improvements
of our criterion. Notably, it becomes literally tight in the case of a quantum memory
suffering the influence of noise. Finally, we apply in Chapter 9 the results of Chapter
8 and prove a result somewhat converse to thermalization. We give sufficient con-
ditions for a system staying close to its initial state of all times. Our result is very
similar to the one derived in [GMELI] but shows distinct advantages.



Chapter 2

Basic concepts of Quantum
Mechanics

We briefly introduce the quantum mechanical concepts and techniques used in this
thesis by use of the notation applied henceforth. For a more thorough introduction
the interested reader is referred to [NCOQ)].

2.1 Hilbert spaces and density operators

A quantum mechanical system A is mathematically described by a Hilbert space
Ha = C%. Throughout this thesis, the dimensions of all Hilbert spaces will be as-
sumed to be finite. Elements of H 4 = Hom(C, H 4) (we identify these two spaces) are
written in the form |¢) 4 (“ket”, with small greek letters) and elements of Hom(H 4, C)
in the form (4[4 (“bra”). Unless explicitly stated otherwise, sets like {|i)a},_; 4,
(with small latin letters) will always denote an orthonormal basis of H 4. We require
that the physical kets be normalised, i.e. (¢[1)) = 1.

The state of a quantum mechanical system A is described by a density matriz
(or density operator) pa. The set of all density matrices describing states of A
corresponds to the set of positive semi-definite, normalized operators on H 4:

S_(Ha) :={pa € Herm(H4) : pa >0, Trps =1} . (2.1)
For technical reasons, we also define the set of sub-normalized density matrices:

S<(Ha) :={pa € Herm(H,) : pa > 0,Trps < 1} . (2.2)



Density matrices of rank 1 or, equivalently, projectors onto elements of H 4 are called
pure states. These states can be written in the form

pa = [V)(¥|a (2.3)

where [¢) 4 is determined by p4 up to an irrelevant complex phase. A state py is
pure if and only if p% = pa & Trp% = 1. Since density operators are positive semi-
definite, every density operator can be written as a linear combination of orthogonal
projectors (spectral decomposition)

pa= ZpilinA (2.4)

where p; > 0 and Z?;‘l pi = 1. The states |i)4 are the eigenstates of the density
operator p4. By use of normalization there is only one element in S_(#4) which is
a multiple of the identity. We call the corresponding state fully mixed and denote it
by

=,
We will use the shorthand notation ¢4 = |¢)(p|4. While other small greek letters

like p, o, w or 7 denote general density operators, the letter ¢ is exclusively used for
pure states.

(2.5)

TA -

2.2 Tensor product spaces, purification and en-

tanglement
If we are interested in a bi- (tri-, ...) partite quantum mechanical system AB (ABC,
...), its Hilbert space is described by a tensor product space:

Hap = Ha® Hp (2.6)

where for Ha = spanc {|i)a},_, 4, and Hp = spanc {|)5},_; 4, We have

A B

Ha®@Hp =spang {|i)a @ [7)BYic1, _ayiet..dp - (2.7)

We will often omit implicit identities which appear as tensor factors on one subsys-
tem, that is

UnapasUl = (Us @ 15)pap(Us @ 15)T (2.8)



or

Tass(par) = (Tasp © Zr)(par) (2.9)

where Zp denotes the identity on End (Hg). If we are only interested in the state on
subsystem A of a bipartite state on AB, this state can be obtained by tracing out
subsystem B

da
pa="Trppap =Y [i)(ilaTr[5)(ilapas] - (2.10)
ij=1
For pap = Y 04y 345y paguli) (jla ® [k) (1|5 we find
da dp
pa= > papikkli)(jla - (2.11)
ij=1 k=1

Every pure state 1)) 4p can be written in the form
W)as =D VPili)a®|i)s . (2.12)

This is the so-called Schmidt decomposition of the state |¢)ap. The Schmidt coeffi-
cients /p; are the square roots of the eigenvalues of the marginals p4 = Trg [¢) (V| aB
and pp = Tra|Y)(¥|as, respectively, and {|i)4} and {|i)4} their eigenstates. We
will several times make use of the fact that the eigenvalues of the reduced states pa
and pp “on both sides” of a pure state are identical. We will usually omit the tensor
product symbol ® and simply write |i) 4|i)p = |i)a ® |i) 5.

If we want to emphasize that a state is not necessarily pure, we call it a mized
state. Every mixed state can be described as a marginal of a pure state (its purifi-
cation), that is for every ps € S_(Ha) we can find a space Hp and a pure state
|t)) ap € Ha ® Hp such that

pa = Trp [)(¢]ap - (2.13)

For pa =Y. pili)(i|a the state [1)) ap is of the form

[Whar =3 Vpili)ali)e (2.14)

and up to the choice of the basis {|i)p};, that is, up to a unitary acting on Hp,
uniquely determined by p4. The fact that we can know “everything” about the

9



state of the joint system AP (which is in a pure state) but have an objective lack of
knowlege about its marginal, the state on A (which is a mixture of different states),
is genuinely quantum mechanical an cannot occur in classical systems.

The key to many genuinely quantum effects is a feature of quantum states called
entanglement. A state in S (Ha ® Hp) is called entangled if it cannot be written

in the form ), pzp o ) & pB As an example, the purification of a non-pure state is
always entangled between the original and the purifying system. For H, = H we
call

1 &
(W) an = NG ; |2} ali) ar (2.15)

the fully entangled state between A and A’. Similarly as for ¢4 we use the shorthand
notation W4 = |W)(¥|44. Note that the partial trace of the fully entangled state
is the fully mixed state,

TI‘A/\I/AA/:TI'A . (216)

In contrast to entangled states, we call a state paz on a bipartite system classical
on Z (with respect to the basis {|i)z}) if

paz € Herm(H ) & spang({|i)(i|2}:) - (2.17)

Such states are of the form

paz = sz V@ i) (2.18)

If we discard the quantum system A, we say that a state on the sysem Z is classical
with respect to {|i)z} if it is diagonal in this basis.

2.3 CPTPM’s, Choi-Jamiotkowski isomorphism and
Stinespring dilation

Let Ta_,p denote the most general way in which states on system A can influence
states on system B. Since the set of density operators is convex in the sense that
> iDi (j) is a valid density operator whenever the states p;) are valid density oper-
ators, we require the map T_,p to preserve the convex structure of this set, that

10



18

Tasn (Zpipf?) = Zpﬂ;x—m (Pfj)) . (2-19)

We thus require that the map 74,5 be linear. The requirement that the images of
density operators are also valid density operators corresponds to two properties of the
mapping called trace preservation and complete positivity. Whilst the first property
is self-explanatory, the second one requires the map to not only map positive semi-
definite operators to positive semi-definite operators, but to do so even if tensored
with an identity operator of any finite dimension. A linear map fulfilling complete
positivity and trace preservation is simply called a CPTPM. CPTPM’s are sometimes
referred to as quantum channels which carry quantum states over space and time.

Since the handling of density operators is much more pleasant than the handling
of CPTPM’s, it is useful to have a mapping between them known as the Choi-
Jamiotkowski isomorphism [Jam72l [ChoT75]. Let A’ be a “copy” of the system A, i.e.
Ha = Hy. Then, the Choi-Jamiotkowski isomorphism J is defined by

J : Hom (End(H4), End(Hp)) — End (Ha ® Hp)
Tassn — J(T) =Tasn (Waa) . (2.20)

By use of purification and the Choi-Jamiotkowski isomorphism one can prove the
following powerful theorem [Sti55]:

Theorem 2.1 (Stinespring extension). Let Ty,p be a CPTPM. Then there exists
a Hilbert space Hp and an isometry Us ,pp € Hom(Ha, Hp & Hp') such that
Vpa € S—(Ha) we have

Tasss(pa) = Trp (UpaU') . (2.21)

By extending H 4 in a way so as to make the isometry U,_,gp/ unitary, we see
that every CPTPM can be seen as a “fragment” of a unitary on a large enough space.

2.4 Hamiltonians and unitary time evolution

Elements of Herm(H 4) are called observables and correspond to principally mea-
surable physical quantities. The dynamics of a quantum mechanical system A are
governed by the observable corresponding to the energy, which is known as the
Hamilton operator of the system. We write it in the form

Hy =Y E}|Ey)(Ey|a € Herm(4) (2.22)
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where FEj) is the eigenvalue (i.e. the energy) of the energy eigenstate |Ex)4. We
assume this operator to be time-independent. The following von Neumann equation
is a generalization of the Schrodinger equation for mixed states. Setting A = 1 it is
given by

pa .
— =—1|H . 2.23
T i [Ha, pa (2.23)
It is solved by
pa(t) = Uapa(0)U} (2.24)
with a unitary
Us =Y e BE)(Ela € UHa) . (2.25)
k
In component-wise form, we have
pa(t) = paii(DIENEjla =) e "Bl 15(0)| E)(Ej|a (2.26)
2% 2
where
paii(t) = (Eilpa(t)|Ej) - (2.27)

Since the temporal average of the oscillating term is given by

. IRV
<€— n(Ei—Ej)t>t _ tlim ; e—]](Ei_Ej)t _ 5Ei,Ej (228)
& 0

we find for non-degenerate energies (i.e. o, 5; = 0;;) the state

T—00 T 0

(pa(t)): := lim = T/)A(t)dt = pamkl B (il = D |EW) (Exlpa(0)| Ex) (Bl
' ' (2.29)

In the case of degenerate energy levels, the | Ey) (Fy| terms in the last expressions are
to be replaced by projectors onto the subspaces spanned by all eigenstates with the
same energy.
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2.5 Interaction strengths

In this thesis we will consider a quantum mechanical system S which is interacting
with an environment E. Let the Hamiltonian of the joint system SE be given by
Hgp. Tt can be decomposed into a term acting non-trivially only on S, a term acting
non-trivially only on E and an “interaction term”. So,

Hsp = Hs®1p+ 1s® Hg + Hipy - (2.30)

Given Hgp the above decomposition is not unique. We may add a term Hj to the
decomposition which is proportional to 1gg. Then, requiring that the operators Hg
and Hp be traceless and that both partial traces of H;,; vanish [LPSW10| |Gogl0al
Gogl0b|, RKTA11] makes the decomposition unique. Explicitly, we find in this case

Hg = TI‘SE (HSE) : ILSE s (231)
dsdp
1 1
HS = - TI‘E (HSE) — TI”SE (HSE) . 15 s (232)
dg dsdg
1 1
HE = - TFS (HSE) — TI"SE (HSE> . ]lE (233)
dg dsdg

and

Hip = Hsp — Hoy— Hs®@ 1p — 1s ® Hp
= Hgp + Trsg (Hsp) - msp — Trp (Hsg) @ g — g @ Trg (Hsg) - (2.34)

The operators Hy, Hg ® 1g and 1¢ ® Hg will be eliminated when computing
certain commutators and traces. Bounds on physical quantities in S (specifically,
the rate with which local entropy measures can be changed) will thus contain the
term || H;n||,, as their sole explicit dependence on Hgp which is then called the
“Interaction strength” |[GHHO7, [Gogl0al, (Gogl0b, RKIATI]. Such bounds will be
derived in Chapter [7]

Shifting all energy levels by a certain amount is physically irrelevant. It can be
seen from or , for example, that only the differences between the energy
levels and not their absolute value is relevant for the quantum mechanical evolution.
H;,; as defined in ([2.34) is indeed invariant under a shift of all energy levels.

Still, an upper bound which involves the term || H;,||, can easily be improved
without any further work. If we add a multiple of the identity to H;,; alone it will be
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eliminated in a commutator in all of the references cited. We may therefore shift all
eigenvalues of H;,; by a certain constant which is such that ||H;.|| , is minimized.
We will therefore use the quantity

A<H7,nt) = 2?\’161]{%1 ||H7,nt - )\ILSEHOO - )\max(Hint) + Amax(_Hint) (235)

to measure interaction strengths. Unlike ||Hnl| ., A(Hine) is now also invariant
under an irrelevant shift of the eigenvalues of Hy,;. A(H;y) is twice the minimal
value ||H;pn|,, can take when shifting all energy levels by the same amount. This
allows to replace || Hn| ., by %A(Hmt). Furthermore, when using A(H;,;) as the
measure of the interaction strength the second summand in definition becomes
irrelevant. For this reason, when calculating A (H;,,), we will use

Hmt:HSE_TI'EHSE@WE_WS@TI'SHSE . (236)

An upper bound which involves A(H;,;) can in general be further optimized. A
commutator or trace which becomes zero for Hg ® 1g or 1g ® Hi will also become
so for - Hs ® 1g or v - 1g ® Hg, respectively, with p, v € R. Instead of we
may therefore define

Hyw=Hsg—pn-Trg Hsp @ g — v - 1s ® Trs Heg (2.37)

where p, v € R are chosen such that A (ﬁmt> is minimized. Simple examples show

that this leads in general to better results. For instance, let Hgp = |1){1|s®|1)(1|z.
We find

1l — - — - - - - __- =
ds dE+dng’d5 dsdp’ dp  dsdp’ dsdp

1 1 1 1 1 1 1 1
T max{

} . (2.38)

and

1

AHpy)=1— ————.
( t) max {ds, dE}

(2.39)
A straightforward case-by-case analysis shows that the optimal values to define H;,,
are given by y = dTE and v = %S which yields A (ﬁmt> = % At least in this example,

the bounds do not only become stronger when replacing || H;n||, by %A (H;pn) and

A (Hip) by A (I:Imt>, but also significantly simpler.
The relevant commutators or traces which are vanishing for Hs ® 1z or 1¢ ® Hg
vanish for any operator of the form Ps ® 1g or 15 ® (g, respectively, with Ps €
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Herm(Hs) and Qg € Herm(Hg). An upper bound involving A (lf[mt> may thus be
optimized even further by use of

A

Hipy = Hsp — Ps®@mp — s ® Qp (2.40)

where Pg and Qg are chosen such that A (I:Imt> is minimized. Finding the optimal
operators Pg € Herm(Hg) and Qr € Herm(Hg) such that

min{AZOi—/\ILSESHSE—P5®7TE—7T5®QE§)\HSE} (241)

is minimized actually defines a semidefinite program.
We have no further results on this issue and leave it as an open problem how

to determine A <I:Imt> We do not know whether there are cases where ﬁmt differs

from ﬁmt-
In [LPSW10] an upper bound proportional to ||Hg ® 15 + Hjne|| is derived. Our
discussion applies analogously.
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Chapter 3

Entropy measures

3.1 Classical entropy measures

The Shannon entropy as introduced in [Sha4§| is defined as

H({p1,...,pn}) == —sz‘ log p; (3.1)

where log denotes the binary logarithm. It describes the averaged uncertainty about
the outcome of a random variable distributed according to the probability distribu-
tion {p1,...,pn}. For the case of n = 2 we find the binary Shannon entropy

H(p) == H({p,1 —p}) = —plog(p) — (1 — p)log(1 —p) . (3.2)
By use of Stirling’s approximation one can show that for large n
log (n) ~nH(p) . (3.3)
n

3.2 Von Neumann entropy

The von Neumann entropy H(A), is a generalization of the Shannon entropy to the
case of quantum states

H(A), :=—Tr(palogpa) . (3.4)

It corresponds to the Shannon entropy of the eigenvalues of p4. Its conditional
version is defined by

H(A|B), := H(AB), — H(B), . (3.5)
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This quantity, roughly speaking, measures how uncertain we are on average about
A if we have access to B. For a state pap =), pl-pf;) ® |i)(i|p which is classical on
B we have, for example,

H(AIB), = Y piH(4) 5 . (3.

The mutual information between systems A and B measures how strongly the two
systems are correlated in a state pap:

I(A:B),=H(A),—H(A|B),=H(A),+ H(B),— H(AB), . (3.7)
We have
—logds < H(A|B), <logdy (3.8)
and
0<I(A:B),<2logdy (3.9)

where H(A|B), < 0 and I(A : B), > logds can only be achieved if A and B are
quantum-mechanically entangled. Table captures some archetypical examples of
bipartite quantum states which are used repeatedly throughout the thesis.

| pas [H(AIB) [ I(A-B) |
A ® |1 logda 0
PA X pPB H(A)p 0
2 Pili)(ila ® |i) (ils 0 | H{pi};)
\IIAB —logdA 210gdA

Table 3.1: Values of H(A|B) and I(A : B) for different states pap

3.3 Rényi entropies

We review multiple entropy measures which provide alternatives to the usual von
Neumann entropy. H,;, and H,,., are introduced due to their direct physical rele-
vance, Hg, Hy and H, as auxiliary quantities.

For pap € S<(Hap) we define the min-entropy of A conditioned on B as

Hyin(A|B), = sup sup {)\ ER:27MAi®0p > pAB} (3.10)
O'BES:(HB)
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and the max-entropy of A conditioned on B as

Huax(A|B), = sup  log[F(pap, 1a @ 0p)]” . (3.11)
oBpES=(HB)
For a trivial system B they simplify to Hpin(A), = —10g Amax(p) and Hyax(A), =
2log Tr \/pa. From [TCRO9, Lemma 2| and [TCR10, Lemma 20] we have for pap €
S—_(Hap) that

—log dwin < Hmin(A|B), < H(A|B), < Hyax(A|B), <logdy (3.12)

where dpi, := min {da,dg}.

An example of the operational significance of Hyin(A|B), is that its negative
quantifies the maximal number of fully entangled bits achievable from p4p with
local operations restricted to B. Hpax(A|B), quantifies, for instance, how random
A appears (when used to generate a key, for example) from the point of view of an
adversary with access to B [KRS09).

For technical reasons we introduce a quantity known as Rényi entropy of order 2
or quantum collision entropy.

Hy(A), = —log(Tr p) - (3.13)
Some authors introduce a quantity
dF(pa) := = 22D 3.14

called effective dimension [PSWOGD, LPSW09] and its inverse
plpa) = Trp} = 2700 (3.15)

called purity [GHHOT, |Gogl10b, RKTIAT1]. While the purity is often easier to handle
analytically than the logarithmic entropy measures, we will, however, stick to the
latter in this thesis whenever possible. This is because the entropic quantities are
extensive, i.e. they scale with the size of the system under consideration which allows
for a better interpretation in terms of physical quantities like the number of particles
in the system. Furthermore, we will generalize results of [PSW06b] and [LPSW09| to
a form that makes entropy measures necessary which, unlike the effective dimension,
have a conditional form.

Let pr > pa > ... > pa, > 0 denote the eigenvalues of py (thus Z?;‘l pi = 1).
Then the inequalities

(3.16)




translate into

vp(p) > ol = pp) (3.17)

or

%HQ(A),; < Hmin(A)p < H2(A)P : (3.18)

As a further auxiliary quantity we introduce the Rényi entropy of order 0 which
is simply defined as

Hy(A), =logrank(pa) . (3.19)
The last auxiliary entropy measure we introduce is
Hp(A), = —sup {)\GR:pAZZ’\-p%} (3.20)

where p% denotes the projector onto supp(pa).
All entropy measures introduced above can be seen as special cases or limits of
the Rényi entropy of order o which is defined as

H,(A), = ; i - log Tr pG . (3.21)
The factor ﬁ is such hat the entropies coincide for every « if the distribution of the
eigenvalues of p, is flat, i.e. if p4 is proportional to a projector. While H 1= Hox
we recover the von Neumann entropy H in the limit a — 1 and H,;, and Hg in the
limits a — oo and o — —o0, respectively.

In conclusion, we have

H.> Hy >H. > H > Hy > Hy (3.22)
N—— A 2 N~ N~~~ N~~~
Hp log rank p Hovos H —logp(p) Hpin

where the inequalities are either trivial or due to [TCRI10, Lemma 3].

3.4 Fidelity and distance measures

Severel notions of the distance or similarity of two quantum states are useful for
different problems. The 1-norm of an operator M € End(H) is

M|, :==Te VMM . (3.23)
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For M =", \i|i)(i| € Herm(#H) we have

1M, =Te|M] =) Al - (3.24)

The metric ||p — o||, induced by this norm is called trace distancell] Its relevance is
basically due to the fact that the maximal probability to distinguish correctly be-
tween p and o by a measurement solely depends on their trace distance and increases
linearly with it [Hel69]. In fact it is given by

1 1
Prmac =5 |1+ 35 lo—oll, ) - (3.25)
If two states have a small trace distance, Fannes’ inequality [NCO0] tells us that

their von Neumann entropy is similar.

Theorem 3.1 (Fannes’ inequality). Let pa,04 € S—(Ha) and define n(zx) := —xlog(x).
Then

|H(A), = H(A)s| <logda-[lp—=ally +n(lp—oll) - (3.26)

While the trace distance is invariant under unitaries, it is in general not so under
purifications. For this reason, another distance measure is more appropriate for some
purposes.

A notion of the similarity of two states is given by the fidelity which generalizes
the Hilbert space scalar product to mixed states. For p,o € S<(#) it is defined by

Fip.o) = |[vaval), - (3.27)
If one of the states is pure, say p = [¢) (1|, we have
E([p) (4], 0) = v {dlole) . (3.28)
The fidelity can only increase under CPTPM’s (e.g. partial traces) [NCO0, i.e.
F(T(p), T(0)) = F(p,0) . (3.29)

Many important properties involving the fidelity can be derived from the following
theorem [UhI76].

I Note that he trace distance is often introduced with an additional factor % in the literature
in order to bound it by 0 and 1. We omit this factor since it would merely lead to an additional

factor % in many results.
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Theorem 3.2 (Uhlmann’s theorem). For p,o € S_(H) we have

F(p,0) = max [(¥|)] (3.30)

where the mazximum is over all purifications V) of p and |¢) of o. For a fized
purification |1) it suffices to mazximize over all |¢).

The fidelity and the trace distance are essentially equivalent measures of the
distance/similarity of two states p,o € S_(H), as shown by the Fuchs-van de Graaf
inequalities [Fvd(G99]

1
L=F(p,o) <5 lp—ol, < v1=Flpo). (3.31)

By use of the fidelity we can define a distance measure satisfying many natural
conditions. We first indroduce the generalized fidelity for subnormalized states p, o €

S<(H)

F(p,0):=F(p,0)++/(1—=Trp)(1—Tro) (3.32)

which coincides with the usual fidelity if at least one of the states is normalized. This
allows us to define the purified distance

P(p,o0) =1/1—F(p,0)? . (3.33)

As its name suggests, the purified distance is the minimal trace distance between
purifications of the normalized states p and o for (if the trace distance is defined
with a prefactor %) For subnormalized states p,o € S<(H) the purified distance
satisfies the following properties [TCRI10]:

e |t is a metric.
e [t cannot increase under CPTPM’s.

e It is invariant under extensions and purifications in the sense that for every
extension (purification) p of p we can find an extension (purification) & of o
such that P(p,o) = P(p,0).

We can find a statement similar to the Fuchs-van de Graaf inequalities for the purified
distance and for subnormalized states.
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Lemma 3.3. For p,0 € S<(H) we have

1
S lp =l < Plp.o) < /2010 —oll, (3.34)

If p,o € S_(H) we have

1
slp=aly = Plp.o) <y/lp—ol, . (3.35)

Proof. Combining [TCRI0, Definition 1 and Lemma 6] we have

1 1
Sl = ol + 5 Tep—Trol < P(p,0) < \/lp—oll, +[Tep—Tral . (3.36)

The second statement then follows trivially, the first statement follows with the
observation that

Tep—Tro| < [lo—ol, - (3.37)
]

By use of the purified distance we are able to define neighbourhoods of mixed
states. For p € S<(H) and & > 0 with Tr p > £* we define an e-ball in S<(H) around
p as

B(p) :={0c € S<(H): P(p,0) <¢e} . (3.38)

From the triangle inequality for P we find the following triangle inequality for the
e-balls:

TeEB(p) Ao e B (1) =0 e B (p). (3.39)

For more details about the purified distance and e-balls we refer to [TCR10].

3.5 Smooth entropy measures

A problem with the conditional min- and max-entropies introduced in Section
is that they are sensitive to small variations of the state on which they are defined
whereas the physical quantities we are bounding with them generally are not. Fol-
lowing an idea first introduced to quantum mechanics in [RW04] we will therefore
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use “smooth” versions of these entropy measuresﬂ Roughly speaking, the smoothing
means that states which are highly untypical do not have to be taken into account.

For ¢ > 0 and pap € S<(Hap) we define the e-smooth min-entropy of A condi-
tioned on B as

A|B), : sup  Hnin(A|B);, (3.40)

pPABEBE(paB)

mm(

and the e-smooth max-entropy of A conditioned on B as

AlB), : inf  Hua(A|B), . (3.41)

max PABEB(paB)

Since all Hilbert spaces in this thesis are finite dimensional, we can and will replace
the suprema and infima by maxima and minima, respectively. In particular, we will
make use of the fact that there is a state in the e-ball which achieves the extremal
value. Note that H:; (A|B), is monotously increasing and HS, (A|B), monotously
decreasing in €.

The relevance of smooth entropies is due to the fact that they are relevant in one-
shot scenarios, where € usually plays the role of an error probability. On the other
hand, the von Neumann entropy is mainly relevant in an i.i.d. scenario. H¢__ (A|B),
for example, quantifies the entanglement cost of quantum state merging with a cer-
tain error probability [Ber09]. It also quantifies the work cost to erase system A
conditioned on a memory B, except with a certain probability [IRARDV1I].

Throughout the thesis we will find upper bounds for distances which contain a
term like 272 i (2UR) (which monotously decreases with growing ¢) and a term like
12¢. Such a bound is strictly stronger than a non-smooth one, since the value of ¢
which optimizes (i.e. minimizes) the bound is in general different from 0.

The smooth min- and max-entropy are dual to each other in the sense that if
papc € S<(Hapc) is pure we have [TCRI0]

max (

A|B), = A|0), . (3.42)

mln( max(

Furthermore, H; (A|B), is invariant under isometries acting on A or B, i.e. it
does not depend on the Hilbert space used to represent the density operator locally.
These two properties of the smooth entropy measures crucially depend on the choice

of P as the relevant distance measure. The smooth entropy measures share natural

2 Note that some of the references like [Ren05, [TCR09, [Dup09] use older definitions for the
smoothing procedure and relations found therein may therefore not be valid with the definition
used in this thesis, which is based on [TCRI10].
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properties with the usual von Neumann entropy like strong subadditivity [TCRI0L
footnote 7]

Hyin(A[BC), < Hy

m

in(AlB)P and
Hranax(A|BC)p S Hr&;lax(A|B)P : (343)

It can be seen from the Schmidt decomposition ([2.12]) that for a pure state ¢ 45 the
entropies of the marginals on the A- and B-subsystem are identical. This observation
generalizes to the case of the smooth entropy measures.

Lemma 3.4. Let pap € S—(Ha ® Hp) be a pure state. Then,
Hiin(A)p = Hiyn(B)y  and
Hyox(A)s = Hyyo (B - (3.44)

max max

Proof. Since Try ¢p4p and Trp ¢ 4 have the same eigenvalues, there is an isometry
mapping one to the other. The statement then follows directly from the invariance
of the smooth entropy measures under isometries. O

The smooth min- and the 2-entropy are essentially equivalent measures of quan-
tum entropy in the sense that besides (3.18) we have
HE

min

1 2
(A), + 5 log = > Hy(A), > Huin(A), (3.45)

where the first inequality stems from [TCR09, Theorem 7]. While the smooth min-
entropy has an operational relevance and is easy to handle by use of chain rules
(c.f. Section , the collision entropy is sometimes easier to handle analytically.

While the smooth entropy measures coincide (for € — 0) with the von Neumann
entropy for probability distributions which are essentially ﬂatE| they are strictly more
general. We discover the von Neumann entropy from the smooth entropy measures
in an i.i.d. (independent and identically distributed) scenario.

Theorem 3.5 (Fully Quantum Asymptotic Equipartition Property). [TCR09] Let
>0 and let pap € S—(Ha @ Hp). Then,

o1 B

lim lim M, (A B)en = H(A|B), (3.47)
1

lim lim —HE, (A|B),en = H(A|B), . (3.48)

e=>0n—oo n

3As it is the case in the first, third and fourth example in Table while we obtain
Hlenin (AlB)PA®PB = Hrenin (A)PA (346)

for a product state.
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3.6 Chain rules

In order to deal with the introduced smooth entropy measures, chain rules are indis-
pensable.

Lemma 3.6. [DBWRI1(0, Lemma A.6.] Lete >0, ',e" > 0 and papc € S=(Hapc).
Then,

A|BC), < HX%+"(AB|C), —

min

2
mln( mm(B|C) + IOg ? . (349)

In the other direction (i.e. in order to lower-bound H{;, (A|B),), we will use two
chain rules neither of which is stronger than the other. Since we will not need it,
we omit the conditioning system C. While the chain rule given in Lemma may
look more useful than the chain rule in Lemma the huge advantage of the latter
is that it allows us to express the condition for decoupling (c.f. Chapter {4)) in a way
which is tight up to differences between smooth min- and max-entropies and small

correction terms.
Lemma 3.7. For anye >0, pap € S<(Ha ® Hp) we have
A|B), > H:, (AB), — logdys . (3.50)

1’1’111’1( min

Proof. Choose pap € B*(p)ap such that Hyw(AB); = HE, (AB),. From [Ren05]
Lemma 3.1.10.] we have

mlH(A|B),5 mln(le)~ - HO( )/3 . (351)
By definition H:; (A|B), > Humin(A|B); and Hyo(B); < logdp and hence the asser-
tion. ]

Lemma 3.8. Let e > 0 and pap € S—(Ha @ Hp). Then,

A|B), > H2. (AB), — Haax(B), — 2- log = ey (3.52)

mln( min

Proof. Most of our proof follows a similar line of argument like the proof of [BCR09,
Lemma B.12.]. Since Hg(A), is the negative logarithm of the smallest non-zero

eigenvalue of p it is obvious that Hr(A), > Hy(A),. Using (3.51]) we find

Hmin(A|B)p 2 -Hmin(AB)p - HO
> Huin(AB), — Hr(B), . (3.53)

4 Note that the quantity called Hyay in [Ren05] differs from ours. Huin(A|B), > Huyin(AB), —
Hyax(B), does not hold.
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By the definition of the smooth min-entropy and ((3.53) we have

HE i (AlB), > max  {Huin(AB), — Hr(B),}

pPABEBE(paB)

> max {max [Humin(AB)n oty — HR(B)HBwHB]} . (3.54)

£
wapeBE(pap) \ 1B

The maximum maxy, ranges over all 0 <IIp < 1 such that [Ipwapllp € B%(wAB)
and hence by use of the triangle inequality eqn. (3.39) Hgwapllp € B*(pap). Using
the auxiliary Lemma we find

He, (A|B),> max {Hmin(AB)w — min [HR(B)HBwHB]} . (3.55)

£
waB€EB2(paB) s

As anext step we choose wap = @ap € B2 (pap) such that Hflm(AB)p = Hupin(AB)s.
Hence we get

Hio(AIB), > Hyg,(AB), — min [Hr(B)uen,] (3.56)

where now the maximum maxy, ranges over all 0 < IIp < 15 such that [Igw,pllp €
B3(@4p). Using Lemmawe can choose 0 < Ilp < 1 with IIgpllp € B2 (Gap)
such that

52 2
Hr(B)iom, < Hitw(B)s — 2 - log 2—4 . (3.57)
From this we finally obtain
£ ﬁ 62
Hremn(A|B)P Z Hrfnn(AB)P - Hr%éX(B)JJ +2- log ﬂ
£ E 2
> H2, (AB), — Hiax(B), + 2 log ;—4 . (3.58)

3.7 Uncertainty about the initial state

Consider a system S in contact with an environment E. We do not make any
assumptions about the “system” and the “environment” apart from the requirement
that the Hilbert space of the joint system be a product space Hsg = Hs @ Hg.
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For example, looking at a large number of equivalent particles, S may consist of any
subset of them. In particlar, the environment does not have to be a heat bath or in
thermal equilibrium.

We introduce a subspace Hq C Hs ® Hg which describes some knowledge we
have about the initial state. When talking about macroscopic physical systems, we
usually do not have exact knowledge about their microstate, which would mean that
we simultanously have measured the state of an enormous number of constituent
particles. We will usually only have knowledge about macroscopic observables like
the volume, pressure, temperature or magnetization of the system. We do therefore
in general not assume that we know the exact initial state of SE but only that its
support is restricted to some substace of Hg ® HE.

Imagine that we measure an operator Agg = . a;|a;)(a;|sp € Herm(Hs @ Hp).
Realistic measurement devices always show a finite imprecision. We can therefore
only know that the measurement outcome lies in an interval [3, 3 + A]. In this case,
the support of the initial density matrix is restricted to

Haq :=spang {|¢) € He @ Hp : Al) = &), £ € [, 2+ A]l} CHs@He . (3.59)

If the operator Aggr commutes with the Hamiltonian Hgg, the temporal evolution will
preserve the space Hq and the support of the state under interest will be restricted
to Hq for all times. In general, however, this will not be the case.

The measurement leads to correlations between SE and the measurement device.
We take in this thesis a more general point of view and assume that the state of SFE
is initially correlated to any system R, which we simply calle the reference. R does
not have to be a classical measurement device but may also be a quantum memory.
Let the density matrix of the joint initial state on SER be given by

pser € S=(Ha @ Hr) . (3.60)
This in particular implies according to (3.12]) that
—logdg < H?

min

(SE|R), <logdq (3.61)

for e — 0.

As an example, if the observer has some classmal information about the initial
state, this might be described as pspr = >, plp ® |7)(i| g, which yields a non-
negative conditional min-entropy [DBWRI10, Lemma A5

Hyin(SE|R), = —log (sz SE%@). (3.62)
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Now assume that we know the initial state only up to a unitary acting on Hgq, so
it may be every state of the form UQpSERU(TZ with Uq € U(Q). If we discard R for a
moment, this is equivalent with saying that we know the eigenvalues of pgr but not
its eigenstates. If pgg is pure, this means that it may be any pure state on Hg. As
is apparent from eqn. (3.62), H:, (SE|R) describes the averaged uncertainty about
the initial state an observer with access to R has, which is due to the mixture on
SE. This term is invariant under any unitary Usg € U(Hs ® Hg). If we now know
the initial state only up to a unitary on Hgq, this additional uncertainty will manifest
itself in logdg terms. With the interpretation of Hq given in (3.59), logdg, is the
larger, the larger the measurement uncertainty A is. The sum of this term and the
entropic term describes therefore our total ignorance about the initial state.

uncertainty about initial state = Hy, (SE|R), + logdg . (3.63)
— N~—~—
due to mixture about eigenstates

While Hi; (SE|R), might be negative if there are quantum mechanical correlations
between the initial state and the reference, this total uncertainty about the initial
state is according to eqn. (3.61)) always non-negative.

The relevance of the previous paragraph is the following. We will derive state-
ments which show that if the uncertainty about the initial state as defined above is
high enough, then almost all states (in a Haar measure sense) of the form Ugpsp RUST)
will yield the same output after the application of a certain channel. In these cases,
the higher the uncertainty about the channel input (as introduced above) the lower is
the variance in the channel outputs. The “uncertainty about the initial state” there-
fore quantifies the lack of distinguishability of different states of the form Ugpsg RU;2
are after applying the channel.

In Chapter [5| we will adapt a different interpretation of UQpSERUgl. There, we
understand Hg as describing some macroscopic constraint or conservation law. Cor-
respondingly, we understand Ug as a physical evolution pggpr may undergo, which is
restricted to Hq. Accordingly, we interpret log dg as the uncertainty which is due to
the evolution Uy and make predictions which hold after most evolutions restricted
to HQ
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Chapter 4

Decoupling

The idea of decoupling was first introduced in [HOWO05] and generalized in [Dup09].
A concise introduction to the decoupling technique which makes use of the smooth-
ing procedure introduced in the previous chapter can be found in [DBWRI10]. The
decoupling technique was originally developed for information-theoretical purposes
like the problem of transmission of quantum data over a noisy quantum channel.
In this problem we want to ensure that there are strong correlations in the final
state between the input and output of a channel. The basic idea is that this can
be achieved by destroying the correlations between this final state and a purifying
environment. Further information-theoretical applications include information lock-
ing [Dup09] and state merging [ADHWO0G, DBWR10]. Physical applications include
the study of information retrieval from an evaporating black hole (assuming that
the internal dynamics of the black hole can be modelled by a Haar measure random
unitary) [HP07] and evaluation of the work cost which is necessary for the erasure
of a quantum mechanical system [dRARDVT1I].

4.1 The theorem

Consider an initial state p of system A which is correlated to a reference system R.
We first apply a unitary Uy on system A and then a mapping 74, 5. The decoupling
theorem predicts that if the averaged entropy of the initial state given access to the
reference (measured by HS, (A|R),) is high enough and/or the mapping is good
enough at destroying correlations (measured by HE, (A'|B), where a5 = J(T))
the final state on B will be decoupled from the reference R and will be in a definite
state which does not depend on the channel input (and in particular on Ua). The
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higher the sum of the two terms is, the closer is the channel output on average to
the decoupled state.

To get a feeling for the two entropic terms informally introduce above, consider
the simple examples in Table which are also given in [DBWRI0].

| Description of initial state ‘ PAR | How(AR), |
Fully mixed on A, indep.of R TAQ PR log d
Classically correlated, pure on A Zf;‘l pilt)(i]a @ |9) (i|r 0
Fully entangled VAR —logd

| Description of mapping ‘ T | He; (A'|B) |
Erasure of A o4 — |0)(0]a log da
Orthogonal measurement on A | a4 — S04 |k) (k| ac|k) (k|4 0
Identity on A oA 04 —logda

Table 4.1: Entropic quantities specifying the initial state p4gr and the mapping T4, p

in the case e = 0. {[i)r};—; 4, and {|k)a},_, 4, are orthonormal bases whereas

-----

Formally, we have the following theorem which generalizes most previous decou-
pling results [DBWRI10].

Theorem 4.1 (Decoupling theorem). Let & > 0, par € S—(Har) and Ta,p a
CPTPM with Choi-Jamiotkowski representation Tag = J(T). Then,

/ T (UparUT) — 75 @ pr||1dU < 9= 3 Hiuin (AIR)p— 3 L (A'1B)r 4 192 (4.1)
U(4)

where fU(A) ...dU denotes the integral over the Haar measure on all unitaries U on

Note that the state on system B appearing in the theorem is the one obained
from applying the mapping to a uniform input,
T8 = Tra Tarp
=Tra Tass (Wara)
= Tasp (Tra Vaa)
=Ta_p(ma) . (4.2)

€. (A'|B),, consider a system A consisting of m +n
qubits and the mapping T4_,p which is just the partial trace over n qubits, leaving

As a further example for HE
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the remaining m qubits which form system B untouched. Then HZ, (A'|B), =
n — m for small €. The more we trace out and the less we leave untouched the
better we are at destroying correlations between A and its copy A’ and thus at
decoupling. We recover the identity and erasure in Table as special cases. We
recall that by Theorem [2.1| every channel 74,5 can be written as a concatenation
of an isometry Uu_,pp (which leaves entropies unchanged) and a partial trace over
B'[[] The entropy HEy,(A’|B), therefore basically measures how much is traced out
when applying Trp/. From this insight we can anticipate an important principle we
will encounter several times during this thesis. When discussing dependencies of the
system S under interest on its environment E we are dealing with mappings of the
form Tg_,g = Trg: oUg_,s5. From the definition of an isometry we have dg < dgdg.
So when F is considerably larger than S, the partial trace over S and thus Tg_,g is
always “good at decoupling”. If we obtain decoupling the channel output does not
depend on the input. Hence independence of the environment is the generic case for
systems which are considerably smaller than it. A system cannot sensitively depend
on another system which is much larger than itself. The same argument does not
apply when discussing dependencies S — S (like the dependency of the temporal
average of S or its state at some later time on its initial state). Hence for S becoming
independent of its own initial state is a more subtle issue than becoming independent
of the initial state of E. The ability of partial traces to “destroy correlations” may
be seen as the fundamental reason behind this observation, which has already been
made in [LPSW09).

4.2 Haar measure averages

For a non-negative random variable X with expectation value £(X) Markov’s in-
equality tells us that

Pr[X>K]<@. (4.3)
K
If £(X) is small choosing e.g. K = /E(X) yields a high probability for a small
outcome. If we average over the natural Haar measure on a high dimensional ball, a
much stronger statement known as Levy’s Lemma can be obtained.
Consider a function

foAlvy e @lg) =1} —C

1B’ is here in general not a copy of B.
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defined on a high dimensional unit sphere which has a finite Lipschitz constant. Since
|) and e*@|)) yield the same pure state [¢)(1)|, we restrict ourselves to functions
f(|¥)) which do not depend on the phase of their argument. We write (f(|¢)))),, to
denote the Haar measure average of f over all elements of the unit sphere. Levy’s
Lemma [MS01] tells us that if we pick |¢) from the Haar measure on the unit sphere
we have an exponentially small probability that f(|¢)) is far from (f([¢))),. The
set of all pure states of a quantum mechanical system can be identified with the
unit sphere in a Hilbert space. Levy’s lemma is therefore useful to turn statements
about the average of functions defined on these pure states into exponentially strong
statements about the probability of obtaining an outcome which considerably differs
from this average [PSW06b, LPSW09].

In this thesis we do not only consider kets but general quantum mechanical states,
that is we work with the set S_(H). For a function

f:S8-(H)—C

we write
/ FUpUNAU
U(H)

to denote the average over all unitaries which is taken with respect to the Haar
measure on the group of unitaries U(#H). Equivalently, we average f over all density
operators which have the same eigenvalues as p and Haar distributed eigenstates.
Averaging over all pure states is a special case of averaging over unitaries in the
sense that

(A0 D)y, = /U(H)f(U|¢><¢IUT)dU~ (4.4)

When an application of the decoupling theorem tells us that the distance of the
channel output from the decoupled state is on average small, we can deduce by
Markov’s inequality that the probability of obtaining an outcome above the average
decreases inversely with the distance of that outcome to the average. In fact, a much
stronger statement can be proven by use of the measure concentration properties of
the Haar measure. Lemma gives an extension of Levy’s Lemma for such Haar
measure averages over unitaries.

Theorem 4.2. In the scenario of Theorem the probability of a violation is
exponentially small in the sense that

Pl)fr {||7j4—>B(UpARUT) —TB® PR”l > 272 Hain (AR =3 Hon(V1B)r 4 192 4 5}

< 2¢1a0*/16 (4.5)
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where the probability is computed over the choice of U from the Haar measure on

U(A).

For large d 4, we can obtain a small violation with very high probability by choos-
ing 6 = d_l/ . This statement holds for any channel 7 we apply the decoupling
theorem to. We will not state it explicitly every time, but keep in mind that the
relevant Lipschitz constant has been calculated once and for all.

Proof. Tt is shown in the proof of [Dup09, Theorem 3.9.] that the Lipschitz constant
of the function

fU) = ||Tass(UparU") — 75 @ prl| (4.6)

is upper-bounded by
2max {[|7(X)|, : X € Herm(H4), [ X]|; <1} - y/llpallo

Since pa € S—(Ha) we have \/||pal,, < 1. Any X € Herm(#H.4) can be written as
X =P, — P, with P, P, € Herm(H 4), Py, P, > 0. Since T is trace-preserving and
positive (i.e. maps positive operators to positive operators)

TN, < IT PO+ 1T (P

=Te [T (P)] + Tr [T(P)]

=TrP +Tr 5
=Xl (4.7)
SO
max {||T(X)[|, : X € Herm(H.), | X]|, <1} <1 (4.8)
and the Lipschitz constant of f is upper-bounded by 2. Lemma tells us that
Pr{[f(U) — (f)y| 2 6} < 24510 (49)
SO
Pr{ f(U) 2 97 (ARSI | 196 4 5} < PE{/(U) 2 (f)y +0)
<Pr{If(U) ~ (/)] > 3}
< 2¢~4a%?/16 (4.10)
where the first inequality is due to Theorem [4.1] ]
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4.3 Converse

For many situations it is not only useful to know under which conditions decoupling
is achieved, but also under which conditions a channel will not decouple a system
from another. A converse to the above theorems has been derived in [DBWRI0).
We provide here a slight generalization of this theorem (the state 74 is arbitrary and
not necessarily given by p4). Furthermore, we provide slightly improved smoothing
parameters (/¢ instead of v/2¢). The proof is almost identical to the one given
in [DBWRI0] and reproduced here in a more explicit way for completemess and in
order to make it better understandable to readers less familiar with the subject.

Theorem 4.3. Let pag € S—(Hagr) and Tag a CPTPM and Tarp = dar/pard (T )\/par-
Let ny € S—(Ha) be an arbitrary state. For any e >0 and ", €” >0, suppose that

"

e/ !l ! = & c 2
HEP " YR (AIR), + HE (A'B); — Ho (B 1na) < —log? . (4.11)

Then,
1T (par) = T(na) @ prll;, > € . (4.12)

Proof. We will actually prove the contrapositive of the statement given in the theo-
rem. We assume that |7 (par) — T (n4) ® prll; < € and will show that

1"

6/ 6” am e 5” - 2
Hiy VAR, > =i (A'B) + Hig (B)ry —log 25 - (4.13)

min max
For every CPTPM T we can find a Stinespring extension (Theorem , that is, we
can write T4_,p as a concatenation of an isometry Uy_,gp: and a partial trace over
B'. Let pagrp be a purification of psr and define opprp := UA%BB//)ARPUI‘_)BB,.
By use of the invariance of the smooth min-entropy under local isometries, we have

Hon Y AIR), = H i VE(BBYR), . (4.14)
Applying the chain rule Lemma [3.6| gives
e/ +2e! 4" 5 e e = 2
Hiy Y AIR), > HiG (B[ BR), + Hiy YV (BIR), —log =5 . (4.15)

By use of the strong subadditivity of min-entropy (3.43)), the fact that o is pure, the
duality between min- and max-entropy and Lemma |3.4] we obtain

Hi(B'|BR), > Hyyi (B'|BRP),
- _Hrilax(B/)U
— —H: (BRP), . (4.16)
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Inserting this into (4.15)) yields

P, W z c c 2
Hy Y AIR)y 2 —Hy (BRP)y + Hiy WA (BIR)y —log 5 . (4.17)
By assumption, 7 (par) is at most ¢ apart (in ||...||;-distance) from a product state
T(na) ® pr. Using Lemma we therefore find
P(T(par), T(na) ® pr) < Ve . (4.18)

We conclude that T(n4) @ pr € BVE (T (par)). Since ogr = T (par) and by use of
the triangle inequality (3.39) we find

HrErnnJr\/g(B|R) > H§11H<B|R) 77A ®PR Hrinn(B)T(UA) . (419)
Inserting this into (4.17) yields
e/ +-2e" "’ € " 2
He b 2R (AR), > —H (BRP), + Hip(B) 7y —log = - (4.20)
€

In order to deal with the —H¢ (BRP), term, we evaluate ogrp = Ta—(parp). By

max

construction, pagrp is pure and therefore allows for a Schmidt decomposition (2.12])
PARP — |V><V|ARP with ’V>ARP = Zz \/]Tz|Z>A’Z>Rp Hence,

ogrp = T (parp) Z\/_\/p_gT i) (jla) @ 19){jlrp - (4.21)

We compare this to

TA'B — dA\/MJ(T)m
= da (Z kam) T (%D ) alih il m) (Z Vall zu)

= 2 VBT (i) Gla) @ [l (4:22)

Since ogrp and T4 g have the same eigenvalues, there is an isometry Vgp_, 4+ mapping
one to the other. Using the duality statement (3.42) it follows that not only the
smooth min-entropy but also the smooth max-entropy is invariant under isometries,
SO

He' (BRP), = H:' _(A'B), (4.23)

max

which concludes the proof. O
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The following theorem makes a statement about how far apart we are on average
from any decoupled state if we first apply a randomly chosen unitary.

Theorem 4.4. Let par € S—(Har) and Ta_p be a CPTPM with Choi-Jamioltkowski
representation Tag = J(T). For any e’ >0 and ", " > 0, suppose that

"

H5’+25”+6/”+\/5(A|R)p + Ha” (A/B)T _ HE

min max min

2
(B), < —log? : (4.24)

Then there is no state wp € S—_(Hp) such that

€
/ [T (UparU") = wp ® prl|, dU < 5 . (4.25)
U(A)
In particular we have
/ | T(UparUT) = T(7a) ® prl|, dU > ¢ . (4.26)
U(A)

Proof. The proof consists of two parts. First we show the proof of which is a
formalization of [DBWRI10), footnote 7]. Then we show that if this is true the integral
cannot be small for any state wp.

Apply Theorem to a state p,p where Hp = Hr ® Hy. Chose 4 = pa. We
think of V' as being a classical register which holds the randomly chosen unitary U
(the dimension of V' is |[U(A)|, the cardinality of [U(A)|, which is infinite). The input
state is given by

PaR = PARV ‘= / UparU't @ |[UNU|ydU . (4.27)
U(A)

Since py = fU(A) UpaUTdU = 14 we have Tap = dav/pat (T)\V/pa = J(T). From
Theorem (4.3 we have that
e <|[T(Par) — T(pa) @ pzll,

_ \ T(Wparl!) @ W)Ul = T(ra) ® pu® [ IO
U(A
| |

:/ H{T(UPARUT)—T(WA>®pR}®|U><U|V||1dU
U(A)

U(A) 1

{TUparUY) = T(m4) ® pr} @ [UNU|,dU

U(A)

= / T WoaalY) = T(ma) @ pif AU (4.28)
U(A
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The third equality is due to the fact that all operators in the integral act on mutually
orthogonal states due to the V-factor.
Now, assume by contradiction that there is a state wp € S_(Hp) such that

€
/ HT<UPARUT)_WB®pRH1dU§ 5 . (429)
U(A)
Then, by use of the triangle inequality,
€
52 [ IT@oanY) = T(ra) ® pall, U = |T(ra) © pn — 0 ® gl
U(A)
>e—||T(ma) —wsl; - (4.30)

Furthermore, by use of the convexity of the trace distance,

/ | T(UparU") — wp @ pg||,dU > HT(/ UparUtdU) — wp ® pg
U(A) U(a) 1
= ||[T(7a ® pr) — wp @ prll;

= [T (ma) = wsl; - (4.31)

The first equality is due to Lemma Combining inequalities (4.30) and (4.31]
yields

/U(A) T (UparU") — ws @ pg||, dU > g (4.32)

in contradiction to (4.29)). O

Since we are usually interested in the limit of small, positive epsilons, it may at
first sight seem disturbing that the term on the right hand side of and
diverges in this limit. Keep in mind, however, that the divergence is only logarithmic
and that the epsilons do not depend on the size of the systems (but usually refer
to error probabilities). The entropic terms, on the other hand, grow proportionally
with the size of the system. In the thermodynamic limit the logarithmic divergence
is therefore negligible.

Both converse theorems may in principle be applied to any mapping 7 investi-
gated henceforth. However, we will only do this explicitly if the application leads to
non-trivial new insights and if the emerging terms are analytically manageable.

While Theorem makes a statement about one particular input state, Theorem
[4.4) averages over possible input states. A major advantage of Theorem [4.4] is that
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Tap is now given by the Choi-Jamiotkowski isomorphism J(7) of the channel T4, 5
and not any more by the difficult-to-handle state da/paJ(T)/pa as in Theorem
4. ol

Applying the chain rule Lemma (3.8) to the decoupling theorem expressed in
(4.1) we obtain

/ |T(UparU") — 75 @ prll1dU
U(4)
<92 1 mm(A\R)p—lHr‘ﬁm( 'B)T+§H1§ax(3)7+log%§ 412 . (4.33)

For small € we can therefore express the condition for decoupling slightly informally
as

A|R), + HE,

min

Hein( (A'B)r — Hiox(B)r 20 . (4.34)

If this is fulfilled, we have by Theorem [£.2] an exponentially small probability that
an input state U ApARU 4 with Uy drawn from the Haar measure yields a channel
output which is further away from the decoupled state than a certain distance. This
distance is exponentially small in the 1.h.s. of .

From we obtain for small € the condition
A|R),+ H;

max

mll’l( (A, ) Hl’al’lll’l(B) é 0 (4'35)

for an input state U ApABUL on average yielding an output state which is further
away from decoupling than some finite quantity which can be found from the precise
form of the condition.

Comparing these two conditions, we see that the condition for decoupling is
tight up to differences between smooth min- and max-entropies and correction terms
of order O(log1). We will call this “essentially tight” but keep in mind that the
differences between smooth min- and max-entropies may be arbitrarily large. The
decoupling criterion is tight whenever the different entropy measures coincide, that
is, if the relevant density operators are essentially flat, i.e. proportional to projectors.
In Chapter 9 the difference between the two entropy measures will manifest itself in
a time interval for which we do not know whether a quantum mechanical system is
already independent of its initial state or not.
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Chapter 5

The postulate of equal a priori
probability

In this chapter we will try to understand a cornerstone of classical statistical physics,
the postulate of equal a priori probabilities, from the underlying quantum mechan-
ics. We will make a statement about how typical states satisfying a certain global
constraint look like locally and will not be concerned with states evolving under a
particular Hamiltonian. In the following chapter we will investigate what we can tell
about temporal averages under the evolution governed by a given Hamiltonian. After
an intermediate chapter about the rates with which entropies can be changed, we will
make statements about the state of the system after evolving for a given time under
a given Hamiltonian. That is, our predictions will become more and more specific
throughout the subsequent chapters and, correspondingly, the problems more and
more difficult. In the present and the following chapter we mainly extend existing
results, in the chapter about the state at a given time we take a shot at unsolved
problems.

5.1 Motivation

Standard approaches to statistical physics are based on the postulate of equal a pri-
ort probabilities, which is used to justify the application of the microcanonical and
the canonical ensemble. One assumes that in equlibrium all states of the system
(described as points in phase space) satisfying a certain constraint (usually energy
conservation) have the same a priori probability.ﬂ In the density operator formalism

LAs an example, c.f. [Kit58, p. 12f]:
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used in quantum mechanics, this is equivalent to postulating that the density oper-
ator is fully mixed on the subspace of the total Hilbert space of the system which
describes the constraint. This means that one describes the joint system by the state
which achieves the maximal entropy compatible with the constraint, which is known
as Jaynes’ Principle [Jay5T7].

Crucially, the postulate describes equilibrium states. Specific initial states might
obviously violate it. We therefore need the assumption that all initial states evolve
into states satisfying the postulate. In classical statistical physics, this evolution
takes place in phase space and is described by Hamilton’s equations. In quantum
mechanics, it is described by a unitary acting on the states on a Hilbert space.

Consider a system in contact with a (usually much larger) environment. If we are
only interested in the details of the system, then its state can be obtained by tracing
out the environment. According to the postulate, we will therefore in equilibrium
trace out the environment of a state which is fully mixed on a subspace of the joint
Hilbert space. The state obtained this way will be called the canonical state of
the system (corresponding to the constraint described by the subspace). Evaluating
this canonical state is a standard task in statistical physics. If the environment is
described as a heat bath (a reservoir with a fixed temperature), it will often turn out
to be of Boltzmannian form. In [Tas98| [GMO02l [GLTZ06] the Boltzmann form of the
canonical state is derived under particular assumptions on the Hamiltonian.

The goal of this chapter is to justify the application of the postulate of equal a
priori probability from the principles of quantum mechanics. This will be done by
showing that all relevant (for statistical physics) consequences of the postulate can
be derived by use of the decoupling theorem. More precisely, consider an initial state
of the system and its environment, about which an observer has some knowledge.
We show that almost every evolution compatible with a global constraint will turn
the system and its environment into the canonical state of the system, about which
the observer will have lost all his or her initial information.

Note that we will not prove that most evolutions lead system and environment to
the equiprobable state (as suggested by the postulate of equal a priori probability)
but only that after most evolutions the system will be in the same state as if system
and environment were in the equiprobable state. This explains why the postulate

If the energy of the system is prescribed to be in the range d F at Ey, we may, according
to the preceding section, form a satisfactory ensemble by taking the density as equal
to zero except in the selected narrow range JE at Ey. We specify the ensemble by

(5.1)

P(E) = Constant (for energy in 6E at Ey)
] 0 (outside this range).
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leads to correct results despite possibly not being fulfilled in physical systems. Quot-
ing [PSWO6b]E] we therefore suggest that the main postulate of statistical mechanics,
the equal a priori probability postulate, should be abandoned as missleading and
unnecessary.

The temporal evolution will in this chapter not be governed by a Hamiltonian.
Rather we consider all evolutions compatible with a macroscopic constraint or con-
servation law. Accordingly there will neither be a notion of time in this chapter.
Given an initial state we will after a brief enough time interval still be close to it.
Our result and the postulate therefore are statements about the state of the system
after having let the evolution enough time. For a discussion of what “enough time”
is, we refer to Chapter [9

We will proof two versions of the main theorem of this chapter which are based
on the chain rules Lemma [3.7 and Lemma [3.8] respectively. The first version allows
for an easier understanding in terms of entropic quantities and to directly reproduce
the main results of [PSW06a, [PSWO06b]. The second version comes up with more
scary-looking epsilon-terms, but allows us to give a condition for the fulfillment of the
postulate which is tight up to differences between smooth min- and max-entropies
and small correction terms.

5.2 Generalization of previous results

5.2.1 Informal version

If we formally describe the global constraint which is imposed on the joint system
SE by Ho C Hs® Hg the postulate of equal a prior: probabilities predicts the joint
system to be in the state mg. The system S is then in the state

772 = Trgmq (5.2)

which we call the canonical state of S with respect to €.

Let an initial state psgr evolve under some constraint 2. Our goal is to character-
ize the evolved state Ugpsg RUST2 and to investigate how the correlations between the
reference and and the system (describing an observer’s knowledge about the system)
develop.

2 “In effect, we propose to replace the postulate of equal a priori probabilities by the principle of
apparently equal a priori probabilities, which states that as far as the system is concerned almost
every state of the universe seems similar to the average.”
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The first version of the theorem can be summarized as follows. If

for ¢ — 0, the evolved state UQpSERUST2 will very likely be characterized by the
following two properties:

1. The system will be decoupled from the reference: I(S : R)y,u+ =0 .

2. The system will be in the canonical state: Trgp (UpUT) ~ T

The probability for this not to happen is exponentially small. As discussed in
Section , condition (5.3) ensures that there is “enough uncertainty” about the
evolved state and quantifies the two sources of this uncertainty. Those are the aver-
aged uncertainty about the initial state an observer with access to the reference has,
SE|R),, and the uncertainty which is due to the evolution, log dg,.

mll’l(

5.2.2 Formal version

Formally we prove the following theorem.

Theorem 5.1. Let Ho C Hs @ Hp and let pspr € S—(Hq® Hg). Let e > 0. Then,

/ | TrE(UQPSERUgT)) — 78 ® prlLdU
U(Q)
< \/ 2 %anm(E ™ 2 mln(SE|R)P + 126

< 2.9 $HS, (SE[R), + 12 . (5.4)

Proof. Theorem [.1] with A = Q, Hq C Hs ® Hp, Ho = Her, par = par, B =S
and T4 = Tr EE| gives

/ || Trg(UparUT) — 75 @ pgl|1dU < 27 T Hn(@18)r = 3 HE i (A R)ogr 4 195 (5.5)
(0]

From eqn. (4.2) we have

7¢ = Trpmg = 7% . (5.6)

3Note that Trg : S—(Hs ® Hg) 2 S=(Hq) — S=(Hs) is a CPTPM.
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Since S_(Hq) € S_(Hs ®Hg) we can write psgr instead of por. This yields the left
hand side of eqn. (5.4)). It remains to show that 27 2Hau(@19)r < \/dg . 272 HainE)rg
Using the chain rule Lemma we have

|S), > H:,,(SQ), —logds . (5.7)

mln( min

Since sy = Trp Voo and Voo € S—(Hs @ Hg ® Hs @ Hpr) is pure, we have
according to Lemma
SQ), = He, (SQ)

min

— H,,(E)

min

mln( \I/QQ/

Voo

= H, (E)xn,, - (5.8)

min

Combinig this with yields
stronger bound.

In order to obtain the weaker bound, we apply the strong subadditivity of the
min-entropy and again the chain rule to get

He, (Y]S), > HEy (E)r, — logds which proves the

Hfmn(E>ﬂ'Q Z Hmin(E)nQ

Z Hmin(Els)ﬂg
> Hupin(SE)r, —logds
= logdg — log ds . (5.9)

5.2.3 Discussion

Theorem [5.1| generalizes the Fully Quantum Slepian-Wolf theorem [ADHWO06], which
corresponds to the special case of Hqg = Hgs ® Hg. With the interpretation of Hg
given in eqn. and taking the operator to be the Hamiltonian, this special case
of our result corresponds to the fully degenerate case.

Consider the special case where the system is initially in a pure state pspr =
¢se @ |r)(r|r, so Hy;,(SE|R), = 0 and the reference might be discarded. In this

case, equation (5.4} . turned into an exponentially strong statement by Theorem
simplifies to the main result of [PSWO0GD|, equations (2) and (3). The similarity with
these equations is striking. Note that these almost identical results were achieved
using totally different approaches. While the derivation in [PSW06a)] is technically
challenging, ours is based on the decoupling theorem and a few key properties like

strong subadditivity and a chain rule for smooth entropy measures.
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What makes our result more general than the result in [PSWOGh] are the follow-
ing three points: First, we do not have the restriction that the initial state of SF has
to be pure. Second, we include the observer’s knowledge about the initial state and
allow for the possibilities of incomplete knowledge or entanglement. Third, averag-
ing over unitaries instead of averaging over pure states allows for a more physical
interpretation of the averaging process. We will comment in more detail about this
point in Section As discussed in Section averaging over all unitaries acting
on a certain space (as we do) is strictly more general than averaging over all pure
states from a certain space (as in [PSWO06D]) in that it can also be applied to mixed
states.

As for the first point, there are two possible interpretations of mixed states which
both show the relevance of extending the result to mixed initial states. Every mixed
state may be seen as the marginal of a pure state. We may think of the “system”
and the “environment” as first being in contact with a further environment which
we call the “laboratory” L and imagine that the joint system SFEL is initially in
a pure state. The interaction between SE and L will lead to quantum mechanical
correlations, i.e. entanglement between them. We then isolate SE from L. While
SFEL is still in a pure state, the state of SE and its evolution has to be described by
a mixed state. We can also understand the mixture of the initial state as in classical
information theory, namely as simply describing subjective ignorance. Since every
real measurement process (even a classical one) has only finite precision there is
always a positive amount of entropy of this kind.

Note that the result of [PSWO06b|] cannot straightforwardly be generalized to
mixed states by introducing a purifying system P with Hp = Hqo and formally
including it into £/, a method we will use later in this thesis where it is appropriate.
The condition H:; (SE|R), + logda g 2logds tells us that we need a high
dq to compensate for a low HS, (SE|R), and vice versa. In other words, we do
not predict decoupling if our knowledge about the initial state is too precise and if
the global constraint is too severe. If the reference R is classical, we always have
H: (SEIR), > 0 and therefore log dg g 2log ds is always sufficient for decoupling.
However, if R is a quantum memory which might initally be entangled with SE, we
might have HS, (SE|R), < 0.

5.2.4 Example: Weakly interactive spins

We evaluate the stronger bound in ([5.4]) for one of the simplest Hamiltonians possible.
This allows us to extend the example exhibited in [PSWOGD|. Both sides of the
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condition
Hyin(E)rg + Hyin(SE|R), 2 log dss (5.10)

grow linearly with the size of the joint system if the ratio of the number of particles
in S and E and their correlations to R are fixed. We would like to obtain a condition
in terms of intensive quantities. In this case condition turns into a simple
inequality for a large enough system.

Consider a set of n weakly-interactive spin—%—systems in a magnetic field in z-
direction that causes an energy gap A between the up- and down-states. With
weakly-interactive we mean that the Hamiltonian is given by the number of up-spins
plus a small perturbation or interaction term. The interaction term should allow
to flip spins around while keeping the total number of up spins conserved. Let €)
denote the constraint given by energy conservation. We assume that the interaction
term is weak enough such that all states with the same number of up-states are in
the same energy-range described by the space Hgq (c.f. ) We consider that the
system S is composed by a fraction « of the spins and call the remaining (1 — a)n
spins “the environment” E. The fraction of spins (in system and environment) in the
up-state will be denoted by p, which, in equilibrium, is a function of the temperature
of the spins. The observer’s knowledge about the initial state p of the spins will be
described by use of a reference R.

Corollary 5.2. Consider the setting described above withmn > 1 and § <p <1-—35.
If the condition

H(p) +

is fullfilled (for e — 0), almost every evolution the spins can undergo will decouple
the system from the reference and leave it in the canonical state.

w > 20 (5.11)
n

Proof. Since the space Hg, is known, we can make use of the stronger bound in ([5.4))
and thus condition 1' From the definitions, we have dg = 2" and dg = (”)

pn
mq is a mixture of states all of which have probability (;L)_l. The eigenvalues
(probabilities) of the states in Trg 7 are given by this factor times the number of
states in Hqo wich lead to a particular state when tracing out S. The number of
up-spins in S is upper-bouned by pn and lower-bounded by an — (n — pn), so

Amax(Trgmo) =  max (O}”) : ( " ) - (5.12)

L€lan—(n—pn),pn] pn
—1
amn n
= . . 5.13
(%) (pn> (5.13)
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For the second equality to be valid, we made use of the assumption %" < pn < n—¢.

From (3.3) we obtain
log Anax(Trs mo) = n (o — H(p)) . (5.14)

So we have H, (F)r, =~ n(H(p) — «) and (5.10]) yields

n(H(p) — )+ H;

m

nw(SE|R), £ an . (5.15)
In the limit of large n (5.15)) is fullfilled if
5 (SEIR),

n

H(p) + > 20 . (5.16)

]

In this simple example, can also be obtained from the weaker bound,
condition . In the derivation of the weaker bound from the stronger one, we
make use of the inequality HS; (E)r, > He i (E|S)x,. We therefore expect condition
to provide better conditions than condition in the case where the states
in Hq are far from product. If we interpret Hq as being the span of the set of energy
eigenstates whose energy lies in a certain interval (as in the above example) this
is the case if these energy eigenstates are strongly entangled, i.e. if the interaction
between S and F is strong.

If inequality is fullfilled, almost every evolution the spins can undergo will
destroy all correlations between the reference and the system and leave the set of
qubits we consider the system in the canonical state. There might be different reasons
for this not to happen, corresponding to the three terms in ([5.11)):

e We might have too precise knowledge about the initial state, leading to a small

HE, (SEIR),

min

~ . If we allow for quantum-mechanical entanglement between R and
SE, it may even be negative.

e The constraint set by energy conservation might be too severe leaving the
evolution “no space” to destroy the correlations between the system and the
reference. Physically, the temperature might be so low that almost all spins
point in the same direction, leading to a small p and thus to a small H(p).

e The environment might be too small in comparison to the system (leaving,
again, not enough space for the evolution).
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In a physical situation our knowledge about the different particles in what we call
the system and the environment might not be specific for each particle but of the
same form for all particles in the system and the environment. If the initial state is
of the form

pser = Nep @ 0}?27“)” (5.17)
with a product system
S=051...5um (5.18)

and similarly for £ and R we have by use of Theorem

1
lim lim —H:
e—=>0n—ocon

(SE|R),

1 1
= o lim lim —Hp; (S|R),eon + (1 — @) - lim lim ————H; (F|R),e0-am

e—>0n—o0 YN e—>0n—oo (1 — a)n
=a-H(SIR),+ (1 —a) - HE|R), . (5.19)
Criterion ({5.11)) then simply becomes
H(p)+a-H(S|R),+(1—a) - HE|R), > 2 . (5.20)

We will evaluate criterion ([5.11)) for different choices of psgr, describing different
accuracies of knowledge about the initial state. These will be:

1. We know the initial pure state of the system.
2. We are initially fully entangled with the system.
3. We know the initial pure state of the system and the environment.

4. We are initially fully entangled with the system and the environment.

1. If we know the exact initial state of the system (a state with ¢ up-spins), but
are completely ignorant about the rest of the spins (the environment), 27min(SEIR),
corresponds to the number of possible states of the environment which complement
the state of the system to a state with pn up-spins. This number is given by ("7‘1").

pn—~
Using ([3.3]) we obtain

4

log <7;m_—az> ~ (n— om)H(ll) : Z) ~ (1 —a)nH(p) (5.21)
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where the approximation holds for large n and small . Consequently, HS, (SE|R), ~
(1 - a)nH(p).

Remarkably, this approximation as well as the state the system will approach if
the condition is fulfilled is independent of ¢: If we have a system in contact with
a much larger environment, the initial energy of the system is irrelevant for the
evolved state at some later time. We get here a first glance at what we will later call
independence of the initial state of the system.

Inserting this in our condition yields H(p) > 7% =~ .

2. If we are initially fully entangled with the system and know nothing about the
microstate of the environment, we have HS, (SE|R), ~ —an + (1 — a)nH (p) which
yields the condition H(p) > 2% ~ 3¢

3. If acces to R tells us the exact initial state of SE, pspr = Y, pili) (ilo ®17) (t| g,
we have HS; (SE|R), = 0 and the condition is H(p) > 2, in accordance with
[PSWO6DL Eq. (86)].

4. Finally, if we are fully entangled with the initial state of the system and the
environment, He, (SE|R), = —logdg = —log (:p) ~ —nH (p). In this case,
is not fullfilled for any temperature so our results do not predict decoupling.

In conclusion, we obtain the conditions listed in Table [5.1]

’ Knowledge about initial state of SE \ To achieve decoupling, we need ... ‘
H(S|R) =0, H(E|R) = (1 — a)nH(p) H(p) >«
H(S|R) = —an, H(E|R) = (1 — a)nH (p) H(p) > %
H(SE|R)=0 H(p) > 2«
H(SE|R) = —nH(p) 7

Table 5.1: Different levels of an observer’s knowledge about the system and the
environment and sufficient conditions for an evolution of the system to a canonical
state decoupled from the observer. The conditions are expressed in terms of the
temperature-dependent fraction of up-spins p and the fraction of spins which forms
the system «. Note that the first and second condition were derived under the
assumption that « is small.

In the a <« \/Lﬁ regime, the canonical state 7§ can be shown to be of the form,

72 = (p|1){1] + (1 — p)]|0){0])®*" o exp(—BHs), which takes the usual Boltzmann
form. The fraction of spins up, p, is linked to the inverse temperature of the spins
via f = % ln(%), as shown in [PSWO06a]. The function H(p(f)) maps the inverse

temperature-interval (0, 00) bijectively to the entropy-interval (0, %)
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5.3 Essentially tight version

5.3.1 Informal version

In the following we will prove a criterion for the two predictions about the evolved
state UQ[)SE‘RUS% which is tight up to differences between smooth min- and max-
entropies. Except with an exponentially small probability, we obtain a canonical
state on S which is decoupled from R if

SE|R),+ H;,

min

Hiin( (E)rg = Hppa (S)mg £ 0 - (5.22)

This will not be the case generically if

SE|R), + H:

max

Hein( (E)rg = Hipin(S)ma S0 - (5.23)

(E)ny, — HE, (S)r, and HE

max max

The differences HE (E)ry — HE 3, (S)r, quantify, so to
speak, how much the space Hq describing the constraint is weighted towards the
tensor factors Hg or Hg of the joint system. If, in a simplest case, Ho = Ha, @ Ha,
we have for e — 0

Hiin(E)rg = Hpax (S)rg = Hyax (B)mg — Hiyin(S)rg = logda, —logda, . (5.24)

min max

5.3.2 Formal version

Theorem 5.3. Let Ho C Hs @ Hp and let pspr € S=(Ha @ Hg).
Achievability. Let € > 0. Then,

/ | Trp(UapserUd) — 78 @ prll1dU
U(Q)

S 2 % mm(SE|R) +%H§ax(s)”ﬂ_%Hréin(E)"SZJrlOgi% + 125 . (525)
Converse. For any & > 0 and ", " > 0, suppose that
1 111 " 2
e'+2e"4¢
Hiy VA SEIR), + By (B)rg = Hiy(S)ny < —log 25 . (5.26)

Then there is no state ws € S_(Hg) such that

/U(Q) ‘

(5.27)

5
TI'E(UQPSERUQ;) —ws ® PRHl dU < 3
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and in particular

/U(Q) ‘

Proof. The sufficiency statement follows by a similar proof as in the first version of
the theorem. Using Lemma instead of Lemma [3.7) to lower-bound HE,, (€|S),
we find

TI'E(UQPSERU;)) — 7'('{52 X pRHl dU > ¢ . (528)

|S), > H2 (SQ), — Haux(S), — 2- log = 24 (5.29)

mll’l( min

with 79 = Trg Uqq/. Lemma again yields

: 24
mln(Q ‘S) > Hmln(E)\I’QQ/ - Hmax(S) - 2 log —_—
£ 24

= 33 (B) g — Hitax(S)r — 2 log = (5.30)

The converse statement follows from Theorem [£.4] which gives the condition

"

2 1" n
—log = > HE P NEQIR), 4+ HEL (S), — Hn (S),

= Hi ™ VHQIR), + Hipy (B)r — Hi(S)-
= Hot™ " YVHQIR) 4 H (E)ry = Hio(S) g - (5.31)
The first equality is due to an application of Lemma [3.4] O

5.4 Unitary 2-designs

In this chapter we have adapted a point of view in which the average over all unitaries
U on Hg, is interpreted as the average over the evolutions the joint system can undergo
while subject to the constraint 2. The averaging is over the Haar measure which
seems a natural choice. The defining property of the Haar measure, namely being the
unique left-invariant measure on U(H,), translates into the physical statement that
if the evolution Uy we average about is preceded by another evolution respecting (2,
this does not lead to different averages.

However, a given physical system may not be able to exactly realize every unitary
or not even to approximate every unitary efficiently. Furthermore, it has been shown
that, under assumption of the Church-Turing thesis, some (even finite dimensional)
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unitary operators may not be realized as dynamics by any Hamiltonian [Nie97]. A
more physical way of averaging over possible evolutions is thus given by a wunitary
2-design which is defined as a finite set of unitaries which reproduces the first and
second moments of the Haar distribution.

It has been shown [HL0O9] that random concatenations of two-qubit interactions
approximate the first and second moment of the Haar distribution (and thus consti-
tute approzimate 2-designs) in a time which is polynomial in the number of qubits. It
has also been shown [Szell] that approximate 2-designs approximate the predictions
of the decoupling theorem.

Since the random two-qubit interactions do not preserve any non-trivial subspace

of He @ HEg we set Hg = Hg ® Hg. The fraction jTSTZ in Theorem thus turns into

\/ g—;. The dimensions grow exponentially with the number of particles. Therefore, if

SE consists of a large number of particles this fraction is small whenever we consider
less then half of the particles to constitute the “system”. For a classical reference the
conditional entropy term which then will also appear in the exponent in Theorem
[5.1] is non-negative. Hence by our theorem random two-qubit interactions efficiently
decouple any subset of the qubits which consists of less than half of them from a
classical reference and leave it in the canonical state.

In order to formalize the above, we first provide a formal version of the two
cited theorems. An e-approximate unitary 2-design is a finite set of unitaries and
probabilities attached to them, so that applying those unitaries (weighted with the
corresponding probabilities) to a state approximates the first and second moments
of the Haar distribution to accuracy . For lack of need we omit a formal definition
of the term (which would require to first introduce the diamond norm for channels)
but refer to [HL09].

Theorem 5.4. [HL09, Theorems 2.9. and 2.10.] Consider a distribution u on U(4)
which is either a universal gate set on it or an approrimate unitary 2-design on
two qubits. Draw T random unitaries according to . For each such unitary, chose a
random pair from n qubits and apply the unitary to that pair. Then there is C(u) such
that Ve > 0 and VT > C(u)(n® + nlog 1) the mapping obtained this way constitues
an e-approximate unitary 2-design.

Examples of universal gate sets on U(4) include U(4) itself or any entangling gate
(e.g. CNOT) together with all single qubit gates.

Theorem 5.5. [Szelll, p. 34] Let pap € S<(Ha ® Hg) and let Ta_,p be a CPTPM
with Choi-Jamiotkowski isomorphism Tap. Let (...) . denote the weighted averaged
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over the application of unitaries Uy from an c-approximate 2-design on Ha. Then
for small enough 6 we have

<H7;1—>B(UAPARUI\) — T ® pRH >
1/ A

< /1 + ded?, - 27 2 AIB) —3Ho (AR, 4 8,26 4 125 . (5.32)

Combining this two theorems with Theorem we find the following theorem.
Theorem 5.6. Let Hy = (C*)®". Let A C {1,...,n}, A == {1,...,n} \ A and

o= % Let v denote the probability distribution corresponding to any universal gate
set on U(4) or an approximate 2-design on two qubits. Draw T random unitaries
according to p and apply each of them to a random pair chosen from the n qubits.
Let (...) denote the average over possible evolutions Uy € U(Ha) achievable with
the T" random unitaries weighted with the corresponding probabilities according to .

Then there is C(u) such that Ve > 0, VT > C(u)n?, Vpar € S= (Ha @ Hg) we have

{

As discussed informally above, for large n and non-negative HS; (A|R), a time
which grows quadratically in the number of qubits is sufficient to decouple less than
half of them from the reference and maximize their entropy. The requirement that
we have to consider less than half of the qubits for an initial state with non-negative
conditional entropy coincides with the condition obtained in Corollary in the
limit where the magnetic field-to-temperature ratio is zero. As in Corollary we
cannot predict decoupling for any a > 0 if the qubits are initially fully entangled
with the reference.

Try (UApARUj,) — A ® pr 1>A < 9 30-20n g RHLLAIR, |9 (5.33)

Proof. From Theorem we know that the 7" random unitaries drawn according
to p and applied to a random pair of qubits constitute an e-approrimate unitary
2-design if T > C(p)(n*+nlog 1). We apply Theorem [5.5 where A is the system of
the n qubits, B the qubits described by the index set A and T4_,5 = Tr; the partial
trace over spaces corresponding to the qubits which are not in this set. This gives us

(s (Uaranh) = oa) ),
< /1+4e(2n)t . 27 s TNy 03 HLan(AIR), 4 g 9§ 4 122 (5.34)

where 7p 4 = Trz WU 44/ is the Choi-Jamiotkowski isomorphism of the partial trace and
U 44 denotes the fully entangled state between the n qubits and a copy of them. 75
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is thus equal to m5. The sufficient number of gates given by C(u)(n? + nlog %) turns
for e = (2")™™ into C'(u)(m + 1)n?. Choosing an m > 4 we can make /1 + 4¢(27)*
arbitrarily close to 1 and 8 - 2"¢) arbitrarily small and then absorb the factor m + 1
into C'(u). For large n it is sufficient to chose m = 5. Following the same steps as in
the proof of Theorem we can show that

HE (AN, > log(27) — 21og(2'A) = n(1 — 2a) (5.35)

WA A/

which after relabling 6 — ¢ concludes the proof. ]
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Chapter 6

Thermalization: Temporal
averages

6.1 The long-term perspective

As poined out in [LPSW09], the straighforward-looking process of thermalization
actually consists of four aspects which may be addressed independently.

1. Equilibration. The initial state of the system evolves towards some particular
equilibrium state and remains close to it for almost all times.

2. Independence of the initial state of the environment. The equilibrium state of
the system does not depend on the precise initial state of the environment but
only on macroscopic parameters describing it, like its temperature.

3. Independence of the initial state of the system. If the system is small compared
to the environment, its equilibrium state should be independent of its initial
state.

4. Boltzmannity of the equilibrium state. The equilibrium state state of the system
takes the familiar Boltzmann form %e‘ﬁHs.

We will address the first three points in this thesis and refer to [RGE11] for a deriva-
tion of the fourth point in a weak-coupling limit between the system and the envi-
ronment and a discussion of what the relevant weak-coupling limit is.

In order to show that almost all initial states equilibrate we want the quantity

(los®) = (sl Dy o (6.1)
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to be small. With (...) p(0) W€ denote a not yet precisely defined average over initial
states. For the second and third point we want a quantity of the form

<H<Ps(t)>t = {ps(t))s p0) 1>p(0) (6.2)

to be small. If we can show that these two quantities are small, then by the triangle
inequality the quantity

(Jles(® = s 0

6.3
1>t,p(0) (6.3)

will be small as well, i.e. almost all initial states will lead to the system being for
almost all times close to a definite equilibrium state.
Expressions obtained from the decoupling theorem are always of the form

/H...HldUg...

where the integration is with respect to the Haar measure on the group of unitaries
acting on a certain space. Hence there is hope to show by use of the decoupling
theorem that expression is small but there is no hope to show that expression
(6.1]) is small.

That time-averaging cannot be written as a Haar measure average over unitaries
can be seen as follows. The time-evolution leads to unitaries of the form e~ *#*
acting on density operators by conjugation. Any density operator which is a mixture
of energy eigenstates is conserved by such a unitary. On the other hand, a unitary
from the Haar measure on the group of unitaries acting on a certain space will with
unit probability not leave it invariant.

We will therefore have to show that is small in a direct calculation. This
has in fact already been done in [LPSWQ9] for pure initial states. We generalize
these calculations to mixed initial states since when dealing with the decoupling
theorem we always allow for mixed states. Then by use of the decoupling theorem
we give conditions for being small, thereby extending the equivalent theorem
in [LPSW09] and providing a technically simpler proof.

We take in this chapter a long-term perspective in that we are only concerned
with temporal averages (whether the temporal average of the distance of the state of
the system from its temporal average is small and whether the time-averaged state
is independent of the initial state). If the temporal average of a distance is small we
can by Markov’s inequality conclude that the fraction of times, for which the
distance is large, is small. Still this does not enable us to make definite statements
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about the state of the system at a given time. Of special interest is the question how
long the system needs to reach the equilibrium state or to become independent of its
initial state. The results of this chapter do not tell us anything about this. We will
be concerned with problems like these in the following three chapters.

We assume in this chapter that the Hamiltonian has non-degenerate energy gaps
[LPSWQ9], i.e

E,—E,=E,—E=(Gi=jANk=0)Vi=kANj=1). (6.4)

This in particular implies that the energy levels are non-degenerate. The assumption
is very weak since it only excludes a set of Hamiltonians with zero measure, any
arbitrarily small perturbation will lift all degeneracies with unit probability.

6.2 Equilibration

Theorem 6.1 (Generalization of [LPSW09, Theorem 1]). Consider an initial state
pse(0) € S_(Hs ® HE) which is subject to an evolution governed by a Hamiltonian
with non-degenerate energy gaps. Let {...); denote the temporal average under this
evolution. Define w := (p(t));. Then,

(llps(t) — wsll ) < Vds2 2B < gg273H2(5P) (6.5)

If we have some knowledge about the initial state stored in a classical reference R,
then

(losr(t) — wsrlly)e < Vg2 2 TnERe 4o < gg2—sMnSE® L ge — (6.6)

We leave it as an open problem to generalize the above bounds to the case of a
quantum reference.

We will sketch an example which illustrates why conditioning the smooth min-
entropy on R is relevant. Let

dsdp

parn(0) = o= > IK)(klse ® [£)(kln (6.7)

with |k)sp = \%|Ek> + \%|E’k+1). In this case we have (for ¢ — 0) Hy(SE), =
H:. (SE), = logds + log dg which would predict equilibration for logdg Z logds

min
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(SE|R), =1, so we do

it conditioning were not necessary. On the other hand, H:
not predict equilibration. In fact we have

lpsr(t) — wskrll;
| dsde
= Sded Z |7 R Ee ) Trg | B ) (B | 4 e 50 Teg | By ) (Bl
sdg
K

(6.8)
for all times t.

.....

{i)s @ [7)e}icr... s jmt...a,- Assume furthermore that the |Ej) are ordered such
that states which look similar on F are grouped together. Then most summands in
are close to 2 and ||psr(t) — wsgl|; can certainly be made larger than, say,

for all times t.

Proof. We first prove the part without an involved reference. Let the Hamiltonian
of the joint system be Hsg = >, Ex|Ey)(Ex| and let p(0) = >, 5 pij| Ei) (E;|. The
assumption of non-degenerate energy gaps implies non-degenerate energy-levels (i.e.
E; = E; = i = j) so that according to eqn. temporal averaging cancels all
off-diagonal terms, wsg = >, prr|Er) (Ex|. We conclude that

ps(t) —ws =Y pije T EN Trg |E)(E| (6.9)
i#]
By use of a standard inequality [FvdG99] we have

lps(t) —wslly < Vs llps(t) = wsll, = Vds Trs(ps(t) — ws)? . (6.10)
Using the concavity of the square root function, the time-average yields
(llps(t) = wslly)e < V/ds Trs{(ps(t) — ws)?) (6.11)
where
((ps(t) = ws)?)e =D > pijpmnle” " EtEm=Endy o | BN (B Trp | B ) (Bl -
i#j m#En
(6.12)

By use of the assumption, this time-average can only be non-zero if ¢ = n and j = m,
which simplifies the term in our bound to

Trs((ps(t) —ws)®)e = > pijpsi Trs (Tre |Ei)(By| Trg |E;)(Ei) - (6.13)
i
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We assume that {|s)s}, and {|e)g}, are orthonormal bases of S and E, respectively,
and introduce an identity operator in the form 1g =7 |s')(s'[s.

Trs((ps(t) — ws)®)s
= > iy Trs (Trg | B (| Trg | E)E)

i
= pipii Y (sel E)(E;|s'e)(s'e| ;) (Eilse)
i#£j ss’ee’
= pupii Y (selBy) (Eilse') (s'¢'| ) (Ej|s'e)
1#£] ss’ee’
= pigpsi T (Trs | E3) (E| Trs | Ej) (E;)
i
= > (pipsi = pupss) Tre (Trs |EN(E,| Trs | Ej) (E;)
i > A
+ > papsi Tre (Trs |E) (B Trs | E;)(E))
i
<Y piipj; Trp (Trs | E;) (| Trs | Ej) (E;)
i
<> piopss Tep (Tes [EN(E| Trs [E5)(ES|) + ) pispss T (Trs |E)(Ei| Trs | Ej)(E;))
i#] =1 >0

= Z piipjj 1rE (Tl"s |Ez><Ez| Trg |EJ><E]|)
5]
= TI'E (CU}QE)
— 9~ Ha(E)w (614)

During the derivation we made use of the following inequalities:

® piipij — pijpji = 0: Follows from the positive semi-definiteness of the ma-
Pii  Pij
Pji Pjj
(a(E;| + B(E;]) p (a| E;) + B|E;)) > 0. C.f.[HI05, Observation 7.1.2].

trix which itself follows from the fact that Vo, 8 € C we have

o Trp (Trg|E;)(E;| Trs |E;)(E;|) > 0: The trace of the product of two posi-
tive semi-definite operators is non-negative. Since Trg|E;)(FE;| is a positive
semi-definite operator it allows for a spectral decomposition Trg |F;)(E;| =

58



Ar_|er) (e, and h
> le-) (e,| and hence

>0

Trg (Trs |E)(E;| Trs |E;)(E ZA er| (Trs | Ej)(E)D) ler) >

>0

e p;; > 0: Follows directly from (F;|p|E;) > 0
We conclude that

(lps(t) — wslly)e < V/ds Trs{(ps(t) — ws)?): < v/ds2 2P (6.15)

which concludes the proof of the stronger bound in the first part of the theorem.
The weak subadditivity of the Rényi entropies [vDH02| gives

Hy(E) > Hy(SE) — Ho(S) > Hy(SE) — log ds (6.16)

which proves the weaker bound.
In order to prove the second part of the theorem, first note that since by assump-
tion R is classical, we can according to eqn. (2.18)) write

pser(0) = > pipli @ i) (il - (6.17)

The time-averaged state is given by
wsr =Y pwy ® |i)ilr (6.18)

and hence by use of the triangle inequality and eqn. (6.15) we have

(losn(®) = wsnlh), <‘ (o8 — o) @ li) il >
1/t
< pi (|| (o8 - ) @ 1l ),
Tl
1/t
<Zp“/ s27 B,

< VI Y p it

— /dSQ_%Hmin(ElR)w . (619)
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For the last equality we used eqn. (3.62). Now let pspr(0) € B° (pspr(0)). Since the
purified distance is preserved by the unitary evolution and since it can only decrease
under partial traces we have that P (psr(t), psr(t)) < e for all ¢ and hence also
P (&sr,wsr) < e. So using Lemmawe find

(lpsa(t) = wsrll)e < (lpsr(t) = psr(®)ll)e + (Psr(t) = skl )i + (losr = wsrll)

< Vdg2 2 Mmn(FIR)a 4 g (6.20)
We conclude that
(lpsr(t) — wsrll)e < V/ds2 2 PR 4 4 (6.21)

The weaker bound is then obtained by applying Lemma to each element in
B (psker) separately. O

This is a very strong statement. If the unitary evolution leads the joint state of
S and FE through many different states and thus its time-average has a high entropy
(as measured by Hy(SE), or H, (SE|R),), the system will definitely (and not only
very likely, as in most other theorems in this thesis) spend most of the time close
to its temporal average. If we consider an initial state far from its temporal average
we can predict that the distance will become small. Additionally it is shown in
[LPSW10] that besides being close to its temporal average for most times, the state
ps(t) of the system only fluctuates slowly around it. In [Sholl] it is shown that
the expectation value of “realistic” quantum observables will equilibrate, which does
not only hold when looking at the smaller part of a bipartite system, but for any
quantum mechanical system. This is then used to derive (6.5)).

It can be shown that the Hy(SE), term is on average of the order of logdg — 1
when the initial state psg(0) is drawn from the Haar measure on a large enough space
Ha C Hs ® Hi. Combining this with the above theorem yields the statement that
if we draw the initial state from a space which is much larger than Hg the system
will most likely be close to its temporal average for most times.

Theorem 6.2 (Generalization of [LPSWO09, Theorem 2 (i)]). Let Ho C Hs @ Hp
and psp(0) € S—(Hq). Let WY = (UpUT); denote the temporal average under the
evolution governed by a non-degenerate Hamiltonian Hsg. Then,

2
/ 2 M5B\ qU < - | (6.22)
u(Q) do
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By use of the convexity of the function x % we can also conclude from this

that
2M(5F).u g / —ra—dU
/U(Q) v 27820 E) v

-1
> ( 2—H2(5E)wUdU)
V@)

d
2

> (6.23)

Proof. We first derive a bound on the averaged purity. In order to separate the
integral over U from the rest we define the time-averaging operator T which for a
non-degenerate Hamiltonian is given by

T(p) == (p)e = Z | E)(Ex|p| Ex) (B - (6.24)

By use of Lemma we have

/ p(W)dU = / Tr [w" - w¥] dU
U(Q) U(Q)

:/ Tr [(¥ ®w?)$] dU
Q)

= / Tr (T ® T)(UpU' @ UpU")$] dU
U(Q)

=Tr {(T ® T) {/U(Q) U (p® p)(UT)®2dU} S} (6.25)

where $ = $pg., s denotes a “SWAP”-operator as introduced in Lemma [A.6] It
“swaps” SE and a copy S’'E’ of it.

In the last equality we made use of the linearity of all operators. The integral is
solved in Lemma [A.§ and leads to

do — p(p) p(p)do — 1
NAU =Tr (T @ T){ ——— - Lo + ———— - Saoq ¢ Sesoms
/U(Q)P(W) 1“[( ® ){dg do oo + B —dy  oow [ SEses
(6.26)

Again, So.,o denotes a “SWAP”-operator as introduced in Lemma [A.6l In order
to compute the trace we introdue as a shorthand notation |k) = |E)) and |kl) =
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|Er) ® |E;) and find
d dg — 1
/ pw)dU =Y " Tr {|kl><kl| {;—pc(zp) log + % : SQHQ/} |kl) (kL |SESHEIS/}
Uu(Q) ki Q
dg — 1
- > { ) 1gq + B 1 SQHQ/} [F1) (1| S s | R1)
O — 4O

pp
— dg
= Z kll{ ; P) - Log +%-SQW} k1) (l|1E)

_ Z<kk| {d3’+§l> Moo + plp)da — 1 : SQHQ’} |kk)
k g o

& — dg
_ (p(p) +1) - (do — 1)
= B —do Z<kk|199'|kk>

k

1 2
= O S (it

k

o plp)+1

T do+1
2

<%.

(6.27)

The first inequality is due to the fact that ), (k|1o|k) = dq and that every summand
is at most 1. O

A direct corollary of Theorem and Theorem is the equilibration in the
situations we are physically interested in, namely if we put a system in contact with
an environment about which only a few macroscopic properties are known.

Corollary 6.3. Consider a pure initial state of the system ps(0) € S_(Hg). For
an aribtrary state pp € S—(Ha,) with Ho, C Hg, assume that the initial state of
the environment is given by UppUT with U € U(Qg). Let the temporal evolution be
governed by a Hamiltonian with non-degenerate energy gaps and denote the time-
evolved state of the system by ps(t). Then,

r (([[ps(t) — (ps())ell1)e > ,/\;%] <V2

where the probability is computed over the choice of U from the Haar measure on

U(Qp).

(6.28)

62



Instead of understanding this as a statement about a probability when choosing
a unitary U from the Haar measure on U(€Qg), we may equivalently understand it as
a statement about a probability when choosing a state pp = UprU'T with the same
eigenvalues as pp and Haar distributed eigenstates from Hgq,. That is, we chose pg
from the (unique) unitarily invariant measure on an orbit of the action of U(Qg) on
S_(Qg). Since S_(Qp) is the disjoint union of these orbits, also holds if we
pick the initial state of the environment pg from any unitarily invariant measure on
S_(Hay)-

Since the dimensions grow exponentially with the number of particles and we are

interested in environments with many constituent particles, we assume \/‘ils— to be
Qp

very small in physical situations. Thus any initial state of a system equilibrates for
almost any initial state of a large enough environment the system is interacting with.
We emphasize that the strength of this statement is mainly due its very weak as-
sumptions and hence its wide applicability. We did not make any assumptions on the
Hamiltonian whatsoever with the sole exception of requiring a Hamiltonian with non-
degenerate energy gaps which rules out cases in which system and environment do
not interact at all. Nor did we make any assumption about the quantum-mechanical
systems we call “system” and “environment”.

Proof. Since pg(0) is pure it can be written in the form pg(0) = |¢)(¢)|s. For such
a |[Y)s let Hq = |)s ® Ha, so dg = dg,. Let w¥y denote the temporal average
obtained from the initial state pg(0)®@UppUT. Applying first then the concavity
of the square root function and finally Theorem we find

/ (HPs(t) - ng1>th < ds/ o-1H2(SE)u g7
Hee) U(@s)

< dg / o—H2(SE),u U]
U2e)
[ 2
<dg4|— . (6.29)
da,

Markov’s inequality (4.3]) then tells us that

%f[<Hps<t>—w§H1>t> % ]<¢5 e (6.30)

vV da, vV da,

where the probability is computed over the choice of U from the Haar measure. [J
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Theorem [6.2] generalizes [LPSW09, Theorem 2 (i)] which makes a statement about
averages of entropy measures for pure initial states. With only the statement about
the averaged purity at hand, we had to apply Markov’s inequality in order to obtain
the above corollary. [LPSWO09, Theorem 2 (ii)] shows that for pure initial states
the Rényi entropy of order 2 of the temporal average is not only on average higher
than logdn — 1 but also that the probability of it being smaller than logdg — 2 is
exponentially small. We were not able to generalize this to mixed initial states. In
order to obtain an exponentially strong statement by use of Lemma we would
have to upper bound the Lipschitz constant of the function U — Tr (<U pU T> t)2
which seems difficult. A statement showing that the probability of the entropy of
the temporal average being smaller than log dg — 2 is also for a mixed initial state

exponentially small would conclude the generalization of the equilibration results of
[LPSWQ9].

6.3 Initial state independence of the temporal av-
erage

6.3.1 The relevant measure of entanglement and the equi-
librium state

In this section we deal with the question whether the temporal average of the
state of the system is the same for different initial states with support restricted to
Hqo C Hs @ He. We will find that this is the case if the uncertainty about the initial
state is high enough and/or if the relevant energy eigenstates are sufficiently entan-
gled. In order to quantify the latter, we introdue the quantity ming Humin(S)|5,)(E,|-
Hmin(S)\EkMEk‘ is a measure of the entanglement of the k-th energy eigenstate.
It can be seen by use of the Schmidt decomposition (2.12]) that it corresponds
to the (negative logarithm of the) maximal overlap of |E)) with a product state.
ming Hyin (S )|E,) ;| therefore quantifies the entanglement of the least entangled en-
ergy eigenstate. Energy eigenstates which are (close to) orthogonal to Hq are ir-
relevant for the evolution of states with initial support restricted to Hqg and should
therefore not be considered in a suitable entanglement measure. We therefore use a
“smooth minimum”

£

mkin Hin(9) 18,08, | i = max rl?é? Hin (9)1B,) (B (6.31)
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where the maximum is over all index sets I C {1,...,dsdg} with the property that

> (BilmolEy) < ¢ . (6.32)

kel

This means that we are allowed to neglect energy eigenstates which are not too
important (measured by (Ex|mq|Ek)) for the evolution of initial states from Hg. The
minimum is thus only over energy eigenstates which have significant overlap with the
space Hq. Note that since ), (Ex|mq|Ex) = 1 and since there are dgdg terms in the
sum, most summands are very small. Hence a small ¢ suffices to “smoothen away”
the vast majority of irrelevant energy eigenstates. In fact, since our entanglement
measure is only concerned with the least entangled of the remaining eigenstates, it
suffices to smoothen away those eigenstates which are untypically poorly entangled.
The maximal value (Ej|mq|E)) can take is %. So if dg is large, we can smoothen
away all eigenstates which are untypically poorly entangled and thus interpret the
“smooth minimum” as the typical entanglement of the relevant energy eigenstates.

Consider the unitary Ugg describing the temporal evolution and acting on density
operators by conjugation as in eqn. . While Ugg does in general not leave the
space of initial states Hq invariant, it preserves its linear structure. It makes therefore
sense to speak of a time-dependent equiprobable state mq(t). We can thus define a
time-averaged equiprobable state

Qsp = (ma(t))e = ) |Ew)(Exlmal By)(Ex| - (6.33)

The last expression is invariant under an application of Ugsg to the state mq, it does
therefore not matter which mq(¢) we insert.
For any psp € S—(Hq) we have

s = 3 15 (2 (f

- /U oy DB (0pU) |Eu)

UPUTdU) | Ek) (Exl
)

(Ha

= / (UpUN,dU . (6.34)
U(Ha)

That is, besides understanding ()sz as the temporal average of the averaged state
Tq, we may as well understand it as an average over temporal averages of states from

S_(Ho).
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Our theorem provides a sufficient condition for almost all initial states psgr (with
support restricted do Hqg ® Hg) yielding the equilibrium state (2g as their local time-
average. If this condition is fulfilled, we also predict the local time-averaged state to
be decoupled from a reference which may be correlated with the initial state. That
is, we predict that with very high probability

[(S : R)(ph ~0 (635)
where
TrER<p>t ~ QS . (636)

The condition for this to happen is discussed in Section [6.3.3]

6.3.2 Formal version of the theorem

Formally, we have the following theorem.

Theorem 6.4 (Generalization of [LPSW09, Theorem 3|). Assume Hq C Hg ®
Hpg and consider an initial state pspr € S(Hq ® Hgr). The SE-part is subject to
a temporal evolution governed by a non-degenerate Hamiltonian Hsg. Let Qg =
Trg Qs where Qgg is as defined in eqn. . Then, for any e > 0,

ds

€ ; 52/
/ HTI'E<UPUT>t — Qs ® PRH1 dU < d—2_%Hmin(Q|R)f)_%mmk * Hunin(8) 1) (4] 4 12
U(Q) Q

(6.37)

2
. 2 L. .
where min,, "2 denotes a “smooth minimum” as introduced above.

Proof. Our proof is based on Theorem [4.1] We consider the channel T from (2
to S given by first taking the temporal average and then tracing out the environ-
ment E. According to eqn. the channel is therefore given by To ,s(psg) =
Trg (O, | Ek)(Eklp|Er)(Ek|) if the energy-levels of Hgp are non-degenerate. Note
that this is indeed a CPTPM. By use of the definition of Qg and eqn. (4.2)) we see
that the state 7¢ appearing in eqn. is given by €2g. Theorem therefore yields

£

/ | Tep(UpUT), — Q5 @ pr|, dU < 273 an@Ro=3Hon @197 4 12¢ . (6.38)

U(Q)

In order to examine the entropy-term specifying the channel 7q_,5 we make use of

the chain rule (3.7) and obtain
Hi(Y]9)- > Hy

m

(S), —logds . (6.39)

66



The €V'S-term makes an evaluation of 7q/g necessary.

Tors = Tass (Vo)

= Trg (Z |Ek)(Ek|SE\I’Q/Q|Ek><Ek|SE)

k

= Z Ek|SE| (JlolEx)seli)(jlo @ Tre |Ey)(Eylse

4,5,k
= Zpkpgi’ ® Tr | Ey) (Bl (6.40)
k
where p, = (Ey|mq|Ey) and
(#) (Ek|1) (J] Ew)
)=y St €S- (Ho) - 6.41
4 = 2 gl ) 1) Ve € 5= () (6.41)

Note that

k
T = Zpkpgz/)

i Z]|Ek Eyli)|é) (jler

1,7,k
= TQ . (642)
Given an index set 1 C {1,...,dsdg} let
Fas =Y peply) ® Trp |ER) (Bl . (6.43)
kel

Then
Tars < Tor ® ma Amax(Tre | En) (E]) Ls
< T ® ma Amax(Tre [ E9) (Ei]) Ls
=Ty @ n?gx Amax(Trg | ) (Ey])1g . (6.44)

Since A < B implies Apax(A) < Apax(B) and since Apax (AR B) = Ajax(A) @ Apax (B)
(6.44) implies

5 1
Amax(Tars) < . max A\max(Tre | Ep) (E]) (6.45)
QO g1
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and hence

Hriin(Q/S)T > Hmin(Q/S)?

as long as the index set [ is such that P(7qs, Tars) < €. We note that

Zpkl)gi) ® Trp |Ey) (Ey|

kel 1

=> (6.47)

P(ras, Tars) < 221% : (6.48)
\ ket

We thus require that the index set I be such that ), px < % Using the notation
introduced in Section [6.3.1], we denote the maximization over all such index sets by

maxf/ ?. We combine this with (6.39) to obtain

|Tors — Tarsll, =

so by use of Lemma

HE i (2]S)7 > log da + I%If/igi I]lf;lln Hyin(S)1ep |2y (2] — log ds (6.49)

which yields the theorem. [

6.3.3 Discussion

Given that the conditions of the corresponding theorems are fulfilled, almost all
states in Hgq are locally close to 7% (as shown in Theorem and almost all states
starting their temporal evolution in Hq are locally almost always close to Qg (as
shown in Theorems , and . These two states are in general not identical.
While 7¢ depends only on Hgq, the state Qs depends on both Hq and the energy
eigenstates. (Qgp is identical to mq if the temporal evolution preserves the space Hq
which is the case if and only if there is an index set I such that

Hao = spanc {|Ei) }er - (6.50)

With the interpretation of Hq given in eqn. (3.59) this is in particular the case if the
operators A and Hgp commute.
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Theorem [6.4] provides the following sufficient condition for almost all states which
are only known up to a unitary on a certain space (e.g. all pure states on a certain
space) yielding the same time-averaged local state Qg (for € — 0):

logds < log dg
~——
uncertainty about eigenstates of the initial state
€
+ Hmin(Q’R)P
—_———

uncertainty due to mixture of the initial state

&2

+ mljnHmin(S>\Ek)<Ekl (651)

J/

TV
typical entanglement of the relevant energy eigenstates

Roughly speaking, the less we know about the initial state and the more entangled the
relevant energy eigenstates are between the system and the environment, the higher
is the fraction of initial states which yield approximately the same time-averaged
state on the system. We compare this to [LPSW09, Theorem 3] which gives (in our
notation) the condition

log ds < log do — log (Z@k!ﬂnfEk>2_H2(S)'Ek“Ek'> (6.52)
k
Note that in [LPSW09, Theorem 3] it is only shown that this condition is sufficient
for pure initial states. While it seems not immediately clear which entanglement
measure is better suited for which kind of problem, our result is more general in that
it allows for mixed initial states and takes their possible correlations to a reference
into account.

Here, we want to reproduce two crucial statements derived in [LPSW09]. We
consider that we put the system in contact with the environment at ¢ = 0 so that
the initial state is a product. We first investigate under what conditions the time-
averaged state is independent of the initial state of the environment. Let the initial
state be a product of a fixed pure state ¢g of the system and a generic state pg whose
eigenstates are restricted to a subspace Hq, C Hp of the environment. Since we are
not interested in our initial correlations with the environment state pp we chose the
reference to be trivial in this case. The subspace of the environment describes the set
of states following a certain macroscopic constraint like having a given temperature.
Note that Hg,, is not a subspace of Hg ® Hg, but Ho = |¢p)s ® Hg,, is. We have

do = dq, and HS, (Q)pep = Hoi(QE),. Our condition thus turns into
&.2
log dg é log dQE + anin(QE)p + Hlkin Hmin<S)|Ek><Ek| . (653)
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We have H,; (Qg), > 0. Since also min;’ Hin(S) B,y (B, = 0 and since we assume
that log ds < log dq,, in a physical situation we conclude that if we put any pure state
of a system in contact with an environment, then almost any state of the environment
following some macroscopic constraint yields the same time-averaged state of the
system. Similarly as in Corollary “almost any” here means “all but exponentially
few from any unitarily invariant measure on S—(Hgq, ) according to Theorem ’.
It will be shown in Chapter |8 that the statement also holds for mixed initial states
of the system.

Independence of the initial state of the system turns out to be a much more subtle
issue, as already pointed out in Section 4.1} It does not hold in general that almost all
initial states of the system yield the same time-averaged state. Trivially, we cannot
become independent if there are operators acting on the system which commute with
the Hamiltonian thus giving rise to conserved quantities on the system. But even
requiring that there be no conserved quantities on the system is not sufficient. This
can be seen by looking at an example which is given in [LPSW09]. Consider that the
differences between the energy levels of the system Hamiltonian dominate by far over
the differences between the energy levels in the environment and in the interaction
between system and environment. Then simply due to reasons of energy conservation
the joint evolution cannot turn one of the eigenstates of the system Hamiltonian into
another. Applying our theorem to this problem generalizes the corresponding result
of [LPSW09] to mixed initial states which may initially be correlated to a reference.
If we take Hg = Hg ® |¢) g the condition becomes

&.2

logds S log ds + Hyy (S|R)p + min Huwin(5) ) (i (6.54)

so that the dimensional terms cancel. Hence for any pure initial state of the environ-
ment almost all states of SR which are connected by unitaries on .S yield the same
temporal average on S if the conditional entropy about them given access to R is
high enough and/or the relevant energy eigenstates are sufficiently entangled.

This result may also be understood in the context of Theorems[5.4/and 5.5 Let S
denote a set of qubits with initial correlations to R. Letting the qubits interact for a
time which grows polynomially in the number of qubits has according to Theorem
the same effect as applying a Haar mesure random unitary (as far as we are concerned
with the first two moments of the measure). This then approximates according to
Theorem the predictions of the decoupling theorem which we used to derive
Theorem [6.4] Hence, if we first let the isolated qubits interact for a quadratic time
and put them consecutively in contact with the environment this allows to translate
the above statement from a statement about different initial states of the system to
a statement about different qubit evolutions.

70



Finally, consider an isolated system Hg with Hamiltonian Hg which is not inter-
acting with any environment F. In this scenario there is no notion of the “entangle-
ment of energy eigenstates”. For a non-degenerate Hamiltonian, time-averaging is
formally just a measurement in the energy eigenbasis (c.f. ) The conditional
entropy of the Choi-Jamiotkowski isomorphism of an orthogonal measurement is zero
(c.f. Table[d.1))). So whether we obtain decoupling and an identical time-average on
S for almost all initial states from SR which are connected by unitaries from U(S)
solely depends on the sign of Hf,; (S|R),. For pure initial states of .S, this condi-
tional entropy is zero so that we can neither apply the decoupling theorem nor its
converse. We can neither predict that most pure states lead to the same time-average
nor the opposite. This is not due to the difference between min- and max-entropies
which coincide in this case. So in a certain sense time-averaging is decoupling-wise
“critical”. However, if we add a partial trace over a large part of the system almost
all time-averages will be identical on the remaining part.
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Chapter 7

On the times which are necessary
for entropy changes

In the previous chapters of this thesis we discussed necessary conditions for the
thermalization of the system, namely equilibration to the time-averaged state and
initial state independence of the time-averaged state. In this chapter we would like
to address the time-scales which are necessary in order to change different entropy
measures by a given amount. Since the unitary time evolution does not change the
entropy of the states on which it acts, entropy changes can only occur if we consider
one part of a bipartite system and an interactive Hamiltonian governing the joint
evolution of the system.

7.1 The time needed to change Rényi entropies
with a > 1

For notational convenience we express the following Theorem not in terms of the
Rényi entropies but in terms of the Schatten a-norms which are closely related to
the former. For a > 0 we define

IA]l,, = (Tr |A]")"* (7.1)

with |A] = VAYA. For p € S_(Ha) and o # 1 we have

«

Ha(4), = = log (oall,) - (72)

—
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Theorem 7.1. Let o > 1. Consider a state psp(0) € S_(Hs ® Hg) evolving under
a Hamiltonian Hgg with interaction strength A(Hy,,) as introduced in . Then
for all times t

(7.3)

M| =

d
— t <
st

where

T (Hsp, psp(0)) := (min {2A(Hu), |[[Hsp, pse(O)l, 1) - (7.4)

It is worth noting that the above bound is symmetric under an exchange of S
and E. In particular it does not matter whether we want to change the entropy of
the larger or the smaller part of the joint system SE. We will find the time T to
be of fundamental importance when lower-bounding the times which are needed for
entropy changes. It only depends on the Hamiltonian and the initial state and is
diverging if either the system does not interact with the environment or if the initial
state commutes with the Hamiltonian. In these cases no changes of the local entropy
are possible. In the latter case the initial state does not evolve at all, as can be seen
by the von Neumann equation . We need a long time to change local entropies
if the interactive part of the Hamiltonian is weak or if the initial state is close to a
mixture of energy eigenstates of the Hamiltonian.

Following the discussion in Section [2.5, Theorem may be strengthened if we

replace A (Hyy,;) in the definition of T by A (ﬁmt> or A <[—A[mt>, where A (I:[mt> and

A (f]mt> are as defined in equations (2.37)) and ([2.40|), respectively.

In the limit of @ — oo we find

' D s <p5<t>>\ = (7.5)

N

dt
In the special cases of o = 2 we find
d 1
— N < = 7.6
Vst < (76)

or in integrated form a minimal time of

TV - V(7| (.7

N
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to change the purity from p(i) to p(f). This improves and corrects an existing bound

[Gog10b] ]
Proof. Up to eqn. (7.11)) the proof is due to [RKIAII] and reproduced here for
completeness. By use of the von Neumann equation (2.23)) we have
d a . a—1
& TI'S {p5<t>} = —1 TI'S {OépS (t) TI'E [HSE; pSE(t)]}
= —1 aTrSE {(pgil(t) & ILE) [HSEa pSE(t)]} . (78)

Using the cyclic property of the trace we have

Trop { (0§ (t) ® 1) [Hs ® Lg, pse(t)]} = Trep { [ ') ® g, Hs ® 1] pse(t)}

= Trg {[p% Hs} TTE pSE(t)}
= Trs { [TFE PSE(t)7 pe '(t)] Hs}
—0. (7.9)

Furthermore,

Trse { (0§~ (t) @ 1) [1s @ Hp, pse(t)]} = Trsp {[p57(t) ® 1p, 1s @ Hg] pse(t)}
—0. (7.10)

We conclude that
d : a—
3 Ds {s()} = —1aTrsp { (057 (t) ® 1p) [Hine, psi(t)] }
= —iaTrsp {Him [pse(t), 05 (H) ® 1g] } - (7.11)
We introduce the notation pe.(t) := pse(t) — ps(t) ® pe(t) [GHHOT] to find

d

=T {80} = — 50 Tese {Ho [ (0. 03 (0 0 16]} . (712)

We bound the absolute value of this derivative by use of the inequality

Tr(AB)| < Tr |[AB| = [|ABJ|, < [|A]l, [ Bl (7.13)

! Besides minor flaws, in the derivation of (2.6.40) in [Gogl0b] the term ||peor||; is (combining
(2.6.28), (2.6.33) and (2.6.39)) upper-bounded by 2+/log dg. This is pointless since the trace-distance
|pcor||; is upper-bounded by 2 anyway.
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and the triangle inequality which yields
d
5 T (500} < @ il [ o057 0) 9 18]
< 20| Hintl o [l 9cor (D111 || 0571 (1) © L]
=20 || Hipt | o [l peor (&) 11 || 057 (®)| . - (7.14)

We address each of the three norms individually. The term || H;,,|| . can be optimized
as follows. It can be seen directly from that adding a constant times the
identity to Hj;,; is irrelevant. Following the discussion in Section we can therefore
replace the term || H;|| ., by %A(Hmt) where

A(Hznt) = >\max<Hint) + /\max(_Hint) . (715)

The term ||peor(t)]|; is a trace distance and hence upper-bounded by 2. Since o > 1
we have

Hp H = Amax(ps)* . (7.16)

Note that this point is the reason why the proof does not work for 0 < o < 1. For
0 < a < 1 we would obtain a negative power of the smallest non-zero eigenvalue, for
which it seems impossible to find a general upper bound. In conclusion,

d

dt Trs {p5(t)}| < 2a- A(Hp) - Amax (p5)*

a—1

< 20 A(Hin) - (Trs {o2(0) T . (7.17)

From the last inequality we see that our bound should be the better, the larger «
% Trg {pg(t)}‘ can be obtained from eqn. 1) We

define Ugp := e~ st Since Ugp commutes with the Hamiltonian we have

c(lit Trs {pS(t)} = —1aTrgg {(pgfl(t) ® 1g) Usg [Hsk, pse(0)] U§E}

= —iaTrgp {UgE (ps'(t) ® 1) Usg [Hse, pSE(O)]} (7.18)
we have again by ([7.13] -

j Trg {pS(t }' <a ‘USE 1) ® 1p) USEH |[Hse, pse(0)]];

is. Another upper bound for

< a|pd HOOH (Hsg, pse(0)]],
= WAy (ps(t)*[[Hsz, pse(0)] |,
a- (Trg {,0%(75)})0%1 |[Hse, pse(0)]]]; - (7.19)
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Defining

T (Hsp, psp(0)) = (min {2A(Hw), | [Hse, pse(0)][,}) (7.20)
the differential equations ([7.17)) and ((7.19) can be combined to

G T B0} < 3 (s )™= (721)

By use of Lemma we obtain that for all times ¢

1 t

T 50} € | (s GO - 1) (s topi+ 1) | )

The time needed to change from Trg {p%(i)} to Trs {p%(f)} is therefore at least

Q=

T-|(Tes {o3(D* = (Trs {p5(N)})

=T llps(@)llq = los(Dllal - (7:23)

> 1 (17.23)) could be violated for an infinites-

If it were possible to have ‘% | ps(t) 7>

le

imally small change of % llps(®)|l,,, and hence the assertion. O

7.1.1 The time needed for arbitrarily high changes of en-
tropy

Combining eqn. (7.2) and Theorem we find that the time which is needed to
change a Rényi-entropy with o > 1 from H, (i) to H,(f) is at least

T |27 Hel) _ 9 5% Half)| (7.24)

The second factor is always smaller than 1, so this bound allows arbitrarily high
changes of entropy to happen in time 7. This may come a bit as a surprise. We will
therefore show in this section that (up to a factor of at most ) this is also achievable.

In order to see how arbitrarily high entropies can be achieved in a fixed time,
consider the initial state |00)sg = |0)s®|0) g which has zero local entropy. We evolve
it to |1 )sE = \/%7 > i1 19)s®]i) p, the maximally entangled state of rank r. This state
has local entropy logr (for any «). As a brief calculation shows, the Hamiltonian
Hsp = E_|=){~|sp with |=)sp = 75|00)s5 — 5[¢;) sk evolves [00)sp into [¢,)sp in
time Z-. This achieves the Margolus-Levitin bound [ML97] for this scenario, which

B
provides a lower bound for the time needed to turn a state into an orthogonal state.
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Note, however, that the minimal time needed to achieve an arbitrarily high entropy
may be lower than the Margolus-Levitin bound. The necessary time could actually
be lowered by choosing one of the states i) to be identical to |0).

What does our bound give for this case? A brief calculation reveals that

E_
[Hsg, psp(0)] = —- (100){¥r]se — [¢r)(00]s5) (7.25)
so ||[Hsg, pse(0)]|l, = E_. As for the 2A(H,) term, we define 7y, == £ 37| i) (i|x
and find by use of (2.36))

E_
H = (100){00] + 4} (| — [00) {0 — [¢) (00
_’O><0|®7TE_7TS,T‘®7TE_7TS®|0><0‘E_7TS®7TE,7‘) . (726)
rdg rdg r rdg %
Since A(H;p,;) is according to ([2.35)) the difference between the largest and the small-

est eigenvalue of Hj,; we have 2A(Hppy) > E_(1 — %) and thus for large r we obtain
T = L. Hence arbitrarily high entropies can be achieved starting from a pure state

We have (¢, Hine|t),) = &= (1 - L) and (22| H;n|22) = & (l 1 _ 1 )

in time 77'.

7.1.2 The time needed to reach the Boltzmann distribution

An entropy which is particularly interesting in the context of thermalization is the
entropy of the Boltzmann state. The time which is needed to reach this entropy
gives a lower bound on the thermalization time.

Corollary 7.2. Consider a quantum mechanical system interacting with an envi-
ronment such that its equilibrium state follows the Boltzmann distribution. Let Ey
denote the ground state energy of the system, [ the inverse temperature of its equi-
librium state, Z(B) the corresponding partition function and A(H;pn) the strength of
the interaction between the system and its environment (as defined in (2.35)). Then
the time needed to reach thermal equilibrium starting from any pure state is at least

ﬁ (1 B %) ' (7.27)

This lower bound on the thermalization time holds for any pure initial state of the
system and arbitrary initial states of the environment. Note that higher equilibrium
temperatures yield a higher lower bound on the thermalization time. A stronger

bound can be obtained if we replace A(H;,;) by A (F[mt> or A <I:Imt), as discussed
in Section 2.5
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Proof. Integrating ([7.5)) yields that the time which is needed to change the maximal
eigenvalue from Ajyay(7) t0 Apax(f) is at least

T- |>\max<i> - /\max(f)| :

The assertion then follows directly from noting that the maximal eigenvalue of the
Boltzmann state ze 775 is Ze 7% and that by definition T > m It is easy
to see that applying the corresponding bound for another entropy measure H, with
a > 1 yields a weaker bound. [

7.2 The time needed to change the von Neumann
entropy

We mentioned during the proof of Theorem why our theorem does not hold for
a < 1. In the limit of a — 1, that is for the von Neumann entropy , Theorem
becomes trivial. This is why we try another approach for this entropy. We can do
a series expansion of the logarithm and apply eqn. to each power separately.
This yields the equality [RKIATI]

iH(S)p(t) = — i Trgp {Him [log(ps(t)) ® 1g, pse(t)]} (7.28)

dt
where the logarithm is only applied to non-zero eigenvalues. From this we see that
a state psp has a vanishing derivative of the von Neumann enropy in S under any
Hamiltonian Hgg if and only if

States with this property are called “lazy states” [RKIAT1I].

The absolute value of the derivative in cannot straightforwardly be upper-
bounded as it was possible for @ > 1. The difficulties arise due to the log(ps(t))
term whose entries may have an arbitrarily high absolute value. Since the logarithm
is only applied to non-zero eigenvalues, this term is not even stable against small
perturbations of p. Still, the commutator in ([7.28|) renders the absolute value of the
derivative of the von Neumann entropy finite for any finite-dimensional system .S
(c.f. [Bra07], for example, a result we will discuss in more detail in this section).
We derive here three simple bounds on the rate of change of the local von Neumann
entropy an will see later on that the weakest of them is achievable up to a small
factor.
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Theorem 7.3. Let the joint evolution of a system S in contact with an environment
E be governed by a joint Hamiltonian Hgg with interaction strength A(H;,). Let
{piticy.. as e the eigenvalues of the state ps(t) of the system at time t. Then the
following upper bounds on the absolute value of the temporal derivative of the von
Neumann entropy in S apply:

ds
d 1 .
—H(8)| < 5AHin) || > (logp; —log pi) v/Bjv/brli) (Kl s
j,k=1 1

ds
< 2A<Hint)\ sz' (logpi)2
i=1

< 2A(Hip) log ds . (7.30)

We can learn two immediate things from the first bound. While the entries of
log ps(t) cannot be bounded by any finite value, the expression given in the first
bound can. We conclude that the temporal derivative of the von Neumann entropy
is finite for all times, which is as we would expect. Furthermore, the temporal
derivative of the von Neumann entropy is zero if the distribution described by the
p;’s is flat, i.e. if pg(t) is proportional to a projector. Such states are lazy states.

Since the eigenvalues p; depend on the time ¢, only the last bound can help us
to lower-bound the time we need to change the von Neumann entropy from H (i) to
H(f). In contrast to the bounds on the rate of change of the Schatten norms we
now have for the first time an explicit dependence on the size of the system. This
is no fundamental difference, however, since the entropic quantities which scale with
the size of the system are actually the logarithms of the quantities whose derivative
we bounded in Section [7.1] In fact, the factor logds in the last bound makes sure
that our lower bound on the time which is needed to turn the von Neumann entropy
from 0 to logdg or vice versa does not depend on the size of S. This is as we
would expect following the discussion in Section [7.1.1] Our lower bound for the time
which is needed to reach a fully mixed state starting from a pure one is now m.
This reproduces what we found when dealing with the Rényi entropies with o > 1,
but we have lost the dependence on the relation between the initial state and the
Hamiltonian.

Proof. Since we did not impose any restrictions on the Hamiltonian whatsoever, we
can formally extend the environment with a purifying system P and extend the
Hamiltonian to Hsgp = Hsg ® 1p. By use of we find that H;,; gets an
additional factor 1p so that the quantities ||H;y||,, and A(H;,) are invariant under
this extension.
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Let pspp(t) = |u)(u|sgp. Then by use of (7.28) and ([7.13)

d

EH(S)p(t)

< [[Hintll o [I0g(ps () @ Lp, 1) {ul sepllly - (7.31)

It can be seen directly from that we can add an arbitrary constant times the
identity to H,, and thus replace |[H;n| . by %A(Hmt). Now let |v)g¢p denote a
purification of pg. Since both |v)¢ps and |u)sgp are purifications of pg, there is an
isometry Vis_, pp with Vs pplv)gp = |1t) sep. Hence,

d 1
ZH(S),| < 58(Hi) | [1o8(05) & (Voouor LoV} o) s Versmrl ) WlsaVi g
1
— S AWHin) | Vios e log(ps) @ 1o, 19) (s VI |
1
= SA(Hin) [log(ps) & 1, ) wl7]ll (7.32)

The commutator may therefore be calculated for an arbitrary purification |v)gp of
ps(t). Let ps(t) = S0, pili)(ils and [v)gp = 3%, \/Pili)sli)p- Then,

ds
[llog(ps) ® Lp, [v)(v|splll, = Z (logp; — log ) \/Djv/Drli) (kls @ |7) (k|5
7,k=1 1
ds
= (log pj — log pr) \/Piv/Prli) (kls (7.33)
G k=1 1

For the second equality we used that the dg - (dg— 1) states |j)s|k)p with j # k yield
a zero eigenvalue.

The operator 1 [log(ps) @ Lp, |v)(v|sps| is Hermitian and has vanishing trace, so
its eigenvalues are real and sum up to zero. The operator Il which is the projection
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onto the eigenstates with positive eigenvalues therefore allows to write

[ [log(ps) @ Lp, [V)(v]gp]ll, = 2 Tr {lspi [log(ps) ® Lp, [v)(v|sp) sp}
= 21Tr {[IL,log(p) ® 1] [v){v|}
= 21(v|[II,log p ® 1] |v)
<4|(v[(logp® 1) |v)]

< 44/ (v|IIIIT|v) \/ | (logp® 1) (log p ® 1) |v)
< 4\/ | (log p @ 1)* |v)
ds
=4 Zpi (log pi)?
i=1

< 4logds . (7.34)

The second inequality is due to an application of Cauchy-Schwarz, the last one can
be proved by use of a Lagrange multiplier. ]

Our bound agrees well with the result of [BraQ7] where it is shown that for pure
global states |¢)sp the optimal rate with which the local entropy can be increased
(optimized over pure states and Hamiltonians) is given by

%H(S)qg = ||Hsel "2 max VA1 — log< )\1)) (7.35)

where d = min {dg, dg}. For d = 2 the optimal rate is approximately 1.9123-||Hgsg|| .
and for large d it is approximately logd - ||Hsgl|,, [Bra07].

Using this result, we can slightly improve the weakest bound in Theorem ([7.3))
if a specific dg is given. From ([7.28) we know that only the interactive part of
the Hamiltonian is relevant for changes of the local entropy, allowing us to replace
|Hskll,, in by ||Hint|| .- Again, it can be seen from that we can add an
arbitrary constant times the identity to H;,; and thus replace || H;y||, by %A(Hmt).
Multiplying all energy levels by —1 inverts the time-evolution, so an upper bound
on the rate with which the entropy can increase which only involves A(H;,;) is also
an upper bound on the rate with which it may decrease. Finally, we may add a
purifying system P to SE, formally include it into the environment and replace
d = min {dg,dgdp} in by dg. Our adjusted version of then becomes

d

EH(S)

< A(Hipnt) - max y/A(1 — A)log ()\(ds—_)\l)) (7.36)

1aa<t 1-
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which is achievable if dg < dgdp. This improves the weakest bound in Theorem
by a factor of approximately 2 for dg = 2 and approximately 4 for large dg.

An even stronger bound is proved in [CLV03] for the case of a product Hamilto-
nian Hgp = K¢ ® Kg and a pure global state |¢)sg. The optimal rate with which
the entropy can be increased by a Hamiltonian of this form is given by

d A(Ks)A(KE) A
T (S)y = Sf -2 max /(1 —)\)log (ﬁ)

0<A<1
_A(Ks)A(KE)

; .1.9123 . (7.37)

Notably, this bound is independent of the dimension of S. So any product Hamil-
tonian can (up to a change of the time-scale through higher energies) increase local
entropies with the same optimal rate as the two-qubit Ising interaction o, ® o,
[CLVO03].

As discussed in Section [2.5|we may improve all bounds in this section if we replace
A (Hjp) by A (ﬁmt> or A f[mt> This is because the derivation of eqn. ((7.28)) works
for every decomposition

Hep=Ps®@1p+1s® Qp + Hipy - (7.38)

7.3 The time needed to change the max-entropy

While we were not able to derive a general lower bound for the time needed to change
the entropy H, for 0 < a < 1, we obtain a corollary for situations in which there is
one eigenvalue which is dominant.

Corollary 7.4. In the scenario of Theorem let 0 < a < 1. Consider a pure
initial state on S. After a time t we have

1 i ~ log ((1 - %)“ +dg (%) a) : (7.39)

We note that again our bound allows to achieve arbitrarily high entropies in time
T.

H,(S) <

Proof. Let A := A\pax(ps(t)). For a fixed A, the eigenvalues which maximize H,(S)

are given by [ A, ;S;_Al, ey dls;_)‘l . This can be seen by use of a Lagrange multiplier.
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Hence

IN

Ho(S) < < i —log ()\O‘ + (dg — 1) - (;S__Al)a)

= 1 log (/\a +dg (1 - /\)a) . (7.40)

l—«o

Integrating ((7.5)) and using that at ¢ = 0 we have by assumption A\yax (ps(0)) = 1 we
find

(7.41)

N =

Amax (ps(t) = 1 —

Since (7.40)) is (in the relevant parameter interval) monotously decreasing in A, we

may according to (7.41]) replace A in (7.40) by 1 — % and find

1 i - log <(1 — )"+ dg <%>a) : (7.42)
0

~—

H,(9) <

N =

Since Hpa.x = Hi (and all a-entropies with 0 < « < 1 for that matter) are
constructed so as to be sensible even to the small eigenvalues of the state for which
it is calculated it is generally hard to find find upper bounds for it. In the above
corollary we had to upper-bound the entropy after a certain time by the “worst-case”
scenario in which all the probability weight which is not concentrated in the dominant
eigenvalue is uniformly distributed among the remaining eigenvalues. This made
the dimensional term in our bound necessary. Note that the above bound diverges
proportionally to log ds and thus can become arbitrarily large (and arbitrarily larger
than Hy,y,) for any Apax(p(t)) < 1, as long as the dimension log dg is high enough.

Fortunately the smoothing procedure provides a way out by allowing us to smoothen
away the small eigenvalues and thus lose the dependence on the dimension. The price
we have to pay for this is that the smoothing parameter becomes time-dependent.

Corollary 7.5. In the scenario of Theorem consider a pure initial state on S.

After a time t we have for e > w/Q%

1 1 ¢ t

How(8)y < —low =5 7+ 0 (1) (7.43)

So while we were not able to derive a useful upper bound on the max-entropy of
the actual state pg(t), we can find an alternate state which is at most /2% away (in

purified distance) an for which we can show that the max-entropy is even negative.
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Proof. 1t follows directly from the definition of the purified distance that a
normalized state p has a purified distance /1 — Apax(p)? to the subnormalized state
which only consists of the eigenvalue A\y..(p) and the projector onto the correspond-
ing eigenstate. Thus,

1_)\max(PS)2 1
( ),0 Amax(ﬂS) ( )

We conclude from ([7.41]) that

t
\/1 — Amax (p5)” < 2% - (7.45)

Since a larger smoothing parameter leads to a smaller smooth max-entropy we con-
clude that
Hy 21t/T(S)p < —log

max

(7.46)

1—t/T
O
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Chapter 8

Independence of the initial state of
the environment

In contrast to the previous chapters where we have been dealing with temporal
averages we will now make statements about the state at a given time t. Such
statements are stronger than the ones concerned with temporal averages. If some
quantity is small for all times, so is its temporal average, while the converse does
in general not hold. In this chapter we are concerned with whether the system is
independent of the initial microstate of the environment at any give time. In the
following chapter we deal with the analogous question for independence of the initial
state of the system.

8.1 Simple version

We have already seen in Section that if we take the initial state to be a product
of a pure state on the system and a state drawn from a subspace of the environment
which is much larger than the system (e.g. all states of the environment with a fixed
temperature) then the overwhelming majority of environment states will lead to the
same time-averaged state. We will show that in this scenario not only the time-
averaged state but also the actual state of the system is for all times highly unlikely
to depend on the individual initial state of the environment chosen. The evolved state
at a given time may therefore solely depend on the Hamiltonian, the macroscopic
constraint which is described by the space the environment state is drawn from and
the initial state of the system.

We first obtain a statement which is completely independent of the details of the
Hamiltonian. Consider that we put a state pg(0) in contact with the environment
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which is in a generic state pg(0). The initial state of the environment pg(0) is
subject to a constraint (e.g. its temperature is given) which we describe by a subspace
Hq, € Hgr. We let the initial product state evolve and ask ourselves after a time
t whether the state of the system depends on the initial state of the environment.
Our answer is that this will for almost all initial states of the environment not be
the case if the uncertainty about the initial state of the environment is high enough,
ie. if

cin(E), +logda, £ 2logds . (8.1)
Theorem 8.1. Consider an initial product state

ps(0) ® pr(0) (8:2)

where the support of pg(0) is restricted to Hq, C Hgr. Let ps(pr(0);t) denote the
state of the system at time t when the environment was initially in the state pg(0),
s0

ps (pp(0);t) = Trg [e” 55 (pg(0) @ pp(0)) e HsEt] (8.3)
Then for all times t there is a state T5(t) such that

ds

Vdag

where the state T5(t) does depend on Qg but not on pg(0).

0 2 R (B)r 4 19e (8.4)

/ lps (Upp(0)UT;1) — 75(t)|], dU <
U(Hag)

Proof. We apply Theorem for the channel describing the dependence pg(0) —
ps (pe(0);t) which is given by

Tows(pe(0)) = Trw |Usis (ps(0) @ pi(0)) Ul (8.5)

where Ugp = e~ 155!, Since we are not interested in our relation to the initial state
of the environment, we take the reference to be trivial and thus have Hy; (Qg|R), =
H: (Qp), <log dQEH Theorem then predicts

min

/ [ Top—s(Upp(0)UY) — 75|[1dU < 9= 3 Hiin (8)p(0) =3 Hiain (Ul S)r | 192 (8.6)
U(Qg)

! For the case of an environment which is initially correlated to a reference the proof works in
exactly the same way as presented here.
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where 75 = J (Tap—s). Let ¢pgp be a purification of pg. We define

Tspaga, = Usk (dsp @ ‘I’QEQ/E) U;E (8.7)

which purifies the Choi-Jamiotkowski isomorphism TSQ, of the channel 7q,_,s. Note
that for all times ¢ we have

SPQg), > logda, . (8.8)

mln(

By use of Lemma , Lemma and the strong subadditivity (3.43]) we find

Hrgmn(QlEls) > Hrgmn SQ/E) - 1Ogds

(
— HE. (PQp), —logds
(

min

> Hramn PQE|S) IOgdS

> H:, (PQgS), — 2logds

= log dQE -2 log ds (89)
which concludes the proof. ]

Since the entropy-term in (8.1)) is non-negative it follows directly that if the
restricted environment is more than twice as large as the system there is no Hamil-
tonian and no time for which the system depends on the initial microstate of the
environment. This holds up to a fraction of initial states of the environment pg(0)
which is exponentially small.

Corollary 8.2. For every initial state of the system pg(0) there is a state Ts(t) such
that

1/3
o [Hps(t)—fs(t)H1> +d91/3] e s /10 (8.10)

dg
Vday
where the probability is computed over the choice of the initial state of the environ-

ment pr(0) from any unitarily invariant measure on S—(Hq,) and where T5(t) does
not depend on pg(0).

Proof. This follows directly from reproducing the proof of Theorem [8.1] for the de-
coupling theorem in the form of Theorem . and setting ¢ = 0 and ¢ = d,, 1/ ®. The
change from the statement about the choice of a unitary from the Haar measure
on U(Hq,) to a statement about the choice of a state from any unitarily invariant
measure on S_(Hq,,) is as in the discussion after Corollary [6.3] O
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The state of the system at any time may therefore only depend on the space
Hq, but not on the eigenvalues and eigenstates of pg(0). In physical terms, it may
depend on some macroscopic properties of the environment but not on its detailed
microstate. This statement literally holds for all Hamiltonians, all times ¢ and all
initial states of the system.

A sufficient condition for only exponentially few initial states on Qg leading to a
distinct evolved state of the system is according to the above corollary given by

log dg,, £ max {12,2logds} (8.11)

which we assume to be the case in physical situations.

Note that the exponentially small fraction of environment states which may lead
to a distinct evolved state of the system is not just a technicality. Let pg(t) be a cup
of coffee which at ¢ = 0 is wonderfully hot and Hq, denote the space of environment
states at room temperature. The overwhelming majority of initial states with support
restricted to Hg, will just cool down the coffee. However, if pg(0) contains a human
being with the intention of putting sugar into the coffee, this will lead to a distinct
state pg(t). This state pg(t) is distinguishable from 7g(t), the cooling unsweetened
state of the cup of coffee, with a simple measurement known as tasting. Hence by

use of (3.25)) ps(t) has a trace distance close to 2 from 7¢(t). With E containing
/3
many moles of particles, the fraction e /10 §s vanishingly small. The example

thus shows that “almost all environment states” in a Haar measure/Hilbert space
sense may not be the same as what we colloquially understand by it. In fact, most
states from the Haar measure on Hq, do not contain living beings at all.

8.2 Essentially tight version

In the following we restrict ourselves to pure initial states of the system. This allows
us to derive a bound for independence of the initial state of the environment which
involves the Hamiltonian and the time and is essentially tight. By this we mean
that it is tight up to differences between smooth min- and max-entropies and small
correction terms. It will show that the behavior of the initial state 7, teaches us a
lot about arbitrary initial states with support restricted to Hq,. Let Tsg(t) be the
evolved state of 755(0) = g ® mq,,. If at a given time we have for € — 0

H: .. (S), — H;

max m

W(E) S0 (8.12)

almost any initial state of the environment will lead to the same state of the system
at that time, namely 75(¢). This condition is obviously fulfilled for small enough ¢.
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If, on the other hand,

i (S)r = Hoyox(B)- 20 (8.13)
there is cum grano salis a substantial fraction of initial environment states which
lead to different states of the system.

Intuitively, for ¢ = 0 the entropy of the state Tz (t) is entirely in the environment,
H(FE) =logdg, and H(S) = 0. The unitary evolution will leave the entropy of the
joint system unchanged for all times, H(SE) = logdg,. The unitary has two effects.
First, it transfers entropy from the environment into the system so that H(S) > 0.
Second, it will construct correlations between the system and the environment so that
H(S)+ H(F) > H(SE). Only if the unitary is at some time specifically such that it
can transfer enough entropy from the environment to the system that H(S) £ H(E)
the initial state of the environment has a significant influence on the state of the
system at that time. This is not possible if the conserved entropy H(SFE) = logdq,
is more than twice the maximal value H(S) can take. In this case, (8.12)) is fulfilled
for all times. This can be seen as follows. If logdg, > 2logds we have by use of

and
H€

win(B)r > Hiy (ELS),

> Hpi(ES), —logds
> logdg,, —logds

> logdg

> Hp(9): (8.14)

If we are interested in the more general case of mixed initial states of S, we
may formally extend S with a purifying system S’ and extend the Hamiltonian to
lg ® Hsg. In this case, the sign of H(S'S), — H(FE), is decisive for independence of

the initial state of E. As can be seen from eqn. ((7.8)) (with S and E interchanged) for
example, the extension of S to SS” does not affect how the entropies in £ develop.

Theorem 8.3. Consider an initial product state ¢s ® pg(0) where the support of
pr(0) is restricted to Ha, C Hg. Let ps(pr(0);t) denote the evolved state of the
system. Then for all times t we have

/ los (Up(0)U';1) = 75(2)]|, dU
U(Hag)

< 2_%H§1in(E)P+%H§aX(S)T_%Hréin(E)T+10g:% +12¢ (8.15)
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where the state Tgg(t) does not depend on pg(0) and is given by
Top(t) = e B (g5 @ g, ) T HISEL (8.16)

Conversely, if for any ¢’ > 0 and ", " > 0 we have

€/ 5// 5/” € 5/// 5” 2
Hin2 YA, = HE(9), + Hi(B)- +log 55 <0 (817)
then for every wg € S—(Hs)
9
/ |ps (Upe(0)UT;t) — ws||, dU > 3 (8.18)
U(Hag)

Proof. The channel describing the dependence pg(0) — pg(t) is given by

Tow-s(pe(0)) = Tre |Us (65 @ pu(0)) UL (8.19)

where Ugg = e~ 155! We apply Theorem to this channel and thus need to eval-
uate the entropic terms HZ; (Qg|R), and HE; (]S),. Since we are not interested

min min

in our relation to the initial state of the environment, we take the reference to be

trivial and thus have H:; (Qg|R), = HS;,(Qg),. Defining
T, aps = Use (65 @ Yo, a,,) Ul (8.20)
we have by use of Lemma [3.8] and Lemma that
Hign(O51), 2 s (055), — Hias(S), =2 log =
— H2, (), — Hiax(S), — 2 log i—f . (8.21)

We notice that
e T [t 000 g ]
= Usp (¢s ® Ta,,) Uy (8:22)

which concludes the proof of the first part of the theorem. The second part follows
from direct application of Theorem and using that due to the purity of 7o, q,s
and Lemma [3.4l we have

HE (Q,S), = HE. (Qp), . (8.23)

max

]
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Chapter 9

Independence of the initial state of
the system

The problem of deriving rigorous bounds for the time scales which are needed for
thermalization has recently been called the most important open problem in the
project of justifying statistical physics from first principles of quantum mechanics
[LPSWI10, HGJII]. Tt is our goal to get the solution of this problem a little closer.
We recall the four conditions for thermalization which are equilibration, environment
state independence, system state independence and Boltzmann form of the equilib-
rium state. In principal, each of these conditions may serve to derive a lower bound
on the equilibration time. In Corollary we derived a bound which makes use of
the Boltzmann distribution of the equilibrium state. In the previous chapter we saw
that independence of the initial state of the environment is fulfilled at t = 0 and for
all further times which is why this criterion cannot give us a lower bound for the
thermalization time. In this chapter we try to find out which times are necessary for
a system to become independent of its initial state. More precisely, we discuss the
following questions.

e In Sections[9.1.1 and [9.1.2] we consider a given Hamiltonian and a given initial
state of the environment and discuss conditions for whether different initial
states of the system have already become indistinguishable at some given time.

e In Section we ask ourselves how long we can guarantee that different pure
initial states have not yet evolved to states which are indistinguishable.

e In Section we find that the times obtaines in Section can be improved
if we look at a large number of systems undergoing an i.i.d. interaction with
their respective environment.
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e In Section we find that the times obtained in Section can be improved
if we are willing to neglect an exponentially small fraction of initial states of
the environment.

e In Section we combine the improvements found in Sections(9.1.4]and[9.2.2]

e In Section [9.3] we find sufficient conditions for a system staying close to its
initial state for all times (and thus never becoming independent of it).

9.1 For generic initial states of the system and
specific initial states of the environment

9.1.1 Informal version

In the last chapter we could show that for any initial state of the system it is highly
unlikely to depend on the initial state of the environment at any time in a physical
situation where even a restricted environment is dimension-wise much larger than
the system. Trivially, an analogue statement for independence of the initial state of
the system cannot hold since the system definitely does depend on its initial state
for some small enough time. What is more, independence of the initial state is a
more subtle issue than independence of the environment for all timescales. We have
already seen in Section that we can only guarantee that the temporal average of
the system is independend of its initial state if the relevant energy eigenstates are
sufficiently entangled.

We will find analogously to the last section that the evolution of the initial state
g teaches us a lot about how generic initial states of the system develop. In order to
obtain an essentially tight criterion, we restrict ourselves to pure initial states of the
environment. Let the initial state of the environmet be ¢ and denote by 7sg(t) the
evolved state of the initial state ¢ ® ¢p. For this state, H(S) is initially maximal
(for all entropy measures) while H(FE) is zero. For pure initial states of the system,
as long as

Hyin(S)r & Hipax (B~ (9.1)
the system will not have “forgotten” about its initial state. If at any time

Hyoi ()7 S Hypin(E)~ (9.2)

max

the system will be independent of its initial state.
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In the case of mixed initial states pg of the system which may initially be cor-
related to a reference, we have to add a term HS; (S|R), to the right hand side of
the above conditions. In this case we predict decoupling between S and R if and
only if we predict that S has become independent of its initial state. So a system
becoming independent of its initial state is closely related to a loss of an observer’s
initial knowledge about the system.

Again, the above criterion is tight up to differences between smooth min- and
max-entropies. In the informal criterion given above the gap between the two entropy
measures converts to a critical time-interval for which we do not know whether the
system is already independent of its initial state.

Similarly as in the last chapter, we may formally extend the environment with
a purifying system E’ and the Hamiltonian to Hgrp ® 1p if we are interested in
mixed initial states of the environment. In this case, the sign of H(S) — H(EE') is
of interest.

An immediate consequence is that if the system under interest is more than twice
as large as the “environment” it is interacting with, it will for all times retain some
memory about its (pure) initial state. Using , Lemma and the definition of
the smooth max-entropy we have for all times

Hxiin(S )T — H;

max

(E). > H

m

> Hy,

min

> logds — 2logdg . (9.3)

in(S|E)T - Hilax(E)T
(SE), —logdr — H;,, . (E),

max

9.1.2 Formal version

Theorem 9.1. Consider an initial state psg(0) which is put in contact with a pure
state of the environment ¢ and then evolves under a joint Hamiltonian Hgg. Let

& ¢ denote an “evolution operator” which evolves ps(0) to ps(t). Let Tsp(t) denote
the evolved state of the initial state Tsp(0) = s @ ¢r. Then,

17555 (Upsr(O)UT) = T35 (m5) @ prll1dU
U(s)
< 9 (IR H AL (B oty B (S)-coos B | 1o (9.4)
Conversely, as long as for any &' > 0 and ", " > 0 we have

111

8’ 5// 8/” e E” e 2
Ho™ VS IR, + Ho(B)ey = Hin(S)r +log 55 <0 (95)

min max
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there is no state wg € S—(Hg) such that

€
/ H7—§—>S (UpSR(O)UT) —ws® ,0R||1 5 . (9.6)
u(s)
Proof. Let Ugp := e~ 55! We are interested in the channel
Ts—s: ps — Trg [USE (ps ® ¢g) U;E} - (9.7)

From Theorem (.1l we have that

/ T (UpsrU') — 74 @ pg||1dU < 27 T (SIR) o= R (S19) 4 190 (9.8)
u(s)

where 7gg is the Choi-Jamiotkowski isomorphism of the channel 7 which is purified
by the state

Tssp = Usp (Ussr @ 65) Ulp . (9.9)

By use of Lemma [3.4] and [3.8 we have

e 4
mln(Sl|S> > Hrfun(SS ) max(S> -2 log 2_
e 24
= Hrfnn(E)T — H3ax(S), — 2+ 1og (9.10)

which proves the first part of the theorem. The second part of the theorem follows
directly from the converse decoupling theorem, Theorem and applying that again

by Lemma [3.4]
W (8'S), = HE (F), . (9.11)

max max

The relevant state for the entropic quantities is therefore
Tse = Use (s ® ¢k) U;E . (9.12)
O

We recall that any statement about averaged distances obtained from Theorem
can be converted into a statement about exponentially small probabilities which
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is based on Theorem and proven analogously. Instead of (9.4) we obtain that for
every 6 > 0

P[’]r{HT;_)S (Upsr(O)UT) = Tg_,g (ms) @ pr||, >

1 1 5 1 5 24
93 HoinSIR) =3 Hn (B)r (i + 5 Hiax(S)- (0 Hlog 22 | 192 4 §

< 2¢4s0°/16 (9.13)

where the probability is computed over the choice of U from the Haar measure on
U(S).

9.1.3 Quantitative version

We saw in the previous two sections that comparing the local entropies of the state
TSE(t> = 6_ﬂHSEt (7TS®¢E) 6+ﬂHSEt . (914)

determines whether generic initial states of the system have on average already
evolved close to some specific state or not. It is not the case as long as is
fulfilled. In Chapter [7] we discussed how fast different entropy measures can be
changed. We apply these results in this section to investigate how long we can guar-
antee that is fulfilled and thus how long we can guarantee that different initial
states have on average not yet evolved to the inside of a ball with a certain radius in
trace distance. The times we obtain this way only depend on the radius, the Hamil-
tonian and the initial state of the environment. These times provide lower bounds
on the thermalization time. We discuss the limits of a sufficiently large system and
of a small radius separately.

Theorem 9.2. Consider a system S which at t = 0 is put in contact with an en-
vironment which s i a pure state ¢g. Let the joint evolution be governed by a
Hamiltonian Hgp. Let T = T (Hgp, s ® ¢g) as introduced in . Let pg(t)
denote the state of the system at time t given that its state at t = 0 was ¢g.

For a system S with logds Z 10 for

9.5-107%-
1.9-1072-
2.2-1072-
2.4-1072-

t < (9.15)

NN N
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Figure 9.1: The times for which we can guarantee that different pure initial states
of S have not yet evolved to the same state as a function of logdg. The times are

measured in units of T (Hgg, Ts ® ¢g).

there is no state ws € S_(Hs) such that

é 19
t) — > <<
<HPS() ws 1/ ¢s 2
where
e=10""1
e=1072
e=10"3
e—0

(9.16)

(9.17)

For a specific ¢, Hsp and ws and large enough ds the l.h.s. of can be made

arbitrarily small in time 7T

In the limit of € — O the times for which we can guarantee that there is no state

ws € S—(Hg) which fulfills are given in Figure as a function of logdsg.

Our lower bounds are therefore (for small € and large dg) achievable up to factor

of order of magnitude 102.
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Combining the above theorem with Corollary we find our final lower bound
on the equilibration time. It is given by

o s (1 Zfﬂ) ) st sy O

with a constant ¢ ~ 2 -1072. This bound holds for all pure initial states from a
quantum mechanical system S with logds Z 7 (c.f. Figure . It only depends on
the Hamiltonian Hgr and on the initial state of the environment ¢r. We think of
the inverse equilibrium temperature § as being a function of these two operators.
The first of the three terms in our bound achieves the maximum unless one of the
following two cases applies:

e The system is in equilibrium with high probability in its ground state, i.e.
the equilibrium temperature is much lower than the gap between the system’s
ground state and its first excited state. In this case, the first term becomes
smaller than the second one.

e 75 ® ¢ is close to commuting with Hgg, i.e. all partial traces of energy eigen-
states are either close to ¢ or have eigenstates which are close to orthogonal
to it. In this case, the third term becomes larger than the first one.

The proof of the above theorem and its discussion constitute the remainder of
this section.
According to Theorem [9.1] as long as

1"

’ "o 2
+2¢" e+ "
Ho™ 5 A (SIR) + Hipa(B) = Hon(S): +log 55 <0 (9.19)
holds the system is not yet $-independent of its initial state. A first difficulty arises
due to the term
Ho 25 (SIR), (9.20)
In order to make the dependence on the epsilons analytically manageable, we resctrict
ourselves to pure initial states of the system which allows to apply Lemma[AT0, This
is not a severe restriction since pure initial states minimize the conditional entropy
term (as long as there is no quantum mechanical entanglement between initial state
and reference) and thus remain distinguishable for the longest time anyway.
The state Tsp(t) = e A58 (1 @ ¢p) e 5B starts with maximal entropy in S
and zero entropy in E. In the previous chapter we derived results which answer ex-
actly the question how fast different entropy measures can be changed. For example,
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we have shown that the maximal rate with which A,.. can be changed is a quantity
we called % In our case it is given by

1 .
L i {2A(H,.0), | [Hspoms © Gl (9.21)
Integrating (7.5) and using that Amax (75(0)) = Z- we find
A (75(1)) < 4+ & (9.22)
max \ 7} =~ 5 = .
5 ds ' T
Setting ¢” = 0 we have
HE (S), > —1 L, ! (9.23)
. ~>—lo — 4+ = . .

Note that setting ¢” = 0 is the only possibility to make the term HE: (S), analyt-
ically manageable since we have no results concerning the evolution of the second
largest eigenvalue of 7g.

A much deeper problem is that we have to upper bound the term He, (E),.
In Corollaries [7.4] and we derived bounds for how fast H,.x can increase if it
is initially zero which is precisely what we are interested in. Corollary only
highlights the difficulties: it depends on dr which we actually do not want in our
bound and, even worse, diverges proportionally to its logarithm and thus becomes

useless in sical situations with a large environment. This is why we have to apply
7

Corollary

involving a time-dependent smoothing parameter ” = ~/2%, which

then also appears in the conditional entropy term in (9.19)).

Since we have now bounded all three entropic terms in in the desired
direction we put all this together and find that the system is not yet $-independent
of its initial state as long as

2
t t 1 t 2

—log [ 1— (5/—#2\/2?—#\/5) + log (1—?) + log (d_s+?) +10g?<0.

(9.24)

The remaining free parameter £’ can be chosen so as to optimize the condition. This
allows us to numerically find the time for which we can guarantee that different pure
initial states of the system have on average not yet evolved to the inside of a ball
with radius 5.
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Figure 9.2: The left hand side of as a function of ¢ (measured in units of T')
in the limit of large dg for various values of . For ¢ = 107! (dashed-dotted line) we
can guarantee that the system is not yet independent of its initial state up to time
9.5-107%.T, for ¢ = 1072-T (dotted line) up to time 1.9-1072- T, for e = 10~ (dahed
line) up to time 2.2-1072 and in the limit ¢ — 0 (bold line) up to time 2.4-1072-T.

As discussed we used the values ¢” = /2%, ¢” = 0 and the optimal value for ¢’.

This time only depends on ¢, dg and T, and through T on the initial state of the
environment ¢z and on the Hamiltonian. The dependence on € and dg is negligible
for small € and large dg. There is an implicit dependence on dg through the terms
in T, however. The resulting times for which we can guarantee that the system still
“memorizes” its initial state are of the order 2- 1072 - T for small ¢ and large dg, as
illustrated in Figure 9.2

Achievability

We now investigate the question of how tight the lower bounds in Theorem are.
That is, how fast can we achieve

Hi o (9)r0) & Hipin(E) 7 (9.25)

max

which by Theorem allows to predict that almost all pure initial states of S have
evolved to 75(t). To this end, we analyze a particular combination of a Hamiltonian
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Hgp and initial state of the environment ¢5. We will find that the bound 2-1072-T
is tight up to a factor of approximately 102.

As we have seen in Theorem|[J.1] the initial state 755(0) = ms®|1)(1|s determines
widely the behavior of generic initial states of the form ¢g ® |1)(1|g. For this initial
state we consider an environment which is a copy of the system and an evolution
governed by the Hamiltonian

Hew =Y IE)(E (9.26)

with

| ;) )s @)k )s @ |i)e - (9.27)

1 . 1
= —1i ——|1
V2 V2
A straightforward calculation shows that the effect of this Hamiltonian is to inter-
change the contents of S and E in time 7 with the exception of the first coefficient.
Formally,

ro(t) = FCTOS(”H)(HS v HCTOS“)WS (9.28)
and
i(t) = ”CTOS“)m(uE v “CTOS“)WE . (9.29)

This seems not too far from optimal in order to reach the condition [9.25 which allows
us to guarantee initial state independence.ﬂ

In order to calculate the quantity 7 for this combination of Hamiltonian and
initial state we first calculate by use of

H —ds EME L 1)(1 1 1)(1 1) (7
—Z(| DEN - (1) ls + 1115 © 76 — 75 @ 5 ()¢ |E+|z><z|E>) .

(9.30)

! Obviously, this Hamiltonian does not thermalize the system since it does not lead to equili-
bration. In order to make it thermalizing we could add many more copies of the system S to the
environment so that £ = Fy ... Ex and Hg = Hg,. One could then extend the Hamiltonian in
such a manner that it does not move the contens of E; back to S but further to Fs and so on and
finally from En back to S. Choosing a large N one could make the fraction of time for which S is
not close to its temporal average arbitrarily small.
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Since

1

(11| Hipe|11) s = —1 + — (9.31)
ds
and
1
S
we find
1
A(Hing) > 2(1 — —) . (9.33)
ds
Furthermore,
dg ds 1
)\max<Hint) S )\max (Z ’Ez><E2’> + >\max (Z _5 (’Z><2’S + ’1><1‘S) X ’/TE)
1=2 1=2
ds
T A (Z s ® 2 ([1)(1]p +]i ><'|E>)
=2
1 1
RN SN 9.34
2ds  2dg ( )
and
ds ds 1
)\max(_Hint> S )\max (Z _|Ez><Ez|> + )\max <Z 5 <|Z><Z|S + |1><]—|S) X 7TE)
=2 =2

max (Zﬂ-5® |1 HE—'_‘ ><|E>>

lds—1 ldg—1
— 04 = - 9.35
+5 y +3 7 (9.35)

SO

1
)\maX(Hint) + )\max(_Hint) S 2(1 - d_) . (936)
S
We conclude that
1
A(Hipg) =2(1 — —) . (9.37)
ds



This expression for the “interaction strength” can (for dg > 2) be improved by
calculating A (]:[mt> as defined in (2.37) instead of A (H,;). We simply find that

H;,, = Hgg so that

A (ﬁ[mt) —1. (9.38)

So, as in the example in Section 2.5 the “interaction strength” obtained from
A (ﬁmt) is not only lower but also simpler.

We will see that in order to calculate T' it does not matter whether we use A (Hj,;)

or A (H,y, ). However, it will make a difference in Section [9.1.4}

A brief calculation shows that
T
[Hsg, ms5(0)] = s z_; i1 (1d| — [1d)(i1] . (9.39)

The operator Y%, [i1)(1i| —|1i)(i1| has (dg—1)>+1 eigenstates |ij) with i # 1 # j or
t = 1 = j which yield a zero eigenvalue. Their orthogonal complement has dimension
2(ds —1). The states |1i) £1 |il) with 2 < i < dg form an orthonormal basis for this
orthogonal complement and yield eigenvalues +1. So

Z li1)(1i] — [12)(il]|| = 2(ds — 1) (9.40)
and
7 = (min {28, | s s O], )" = 72 (9.41)

for this combination of Hamiltonian and initial state.

For large dg and a small smoothing parameter we need a time close to 7 to fulfill
and thus guarantee initial state indepence, as is illustrated in Figure . The
formally precise condition for initial state independence, however, is that the r.h.s.
of be small. Since we deal with pure initial states we use Hg; (S|R), > 0.

min

We evaluate the r.h.s. of (9.4) at ¢ = 7. According to (9.28) and (9.29) we have
Ts(m) = |1)(1|s and 7g(7) = . We find therefore for the r.h.s. of ((9.4))

2—%H;in(SIR)p—%Hin(E)m)Jr%Héax(S)Tu)“‘)g5*3 +12e < 1 % +12¢ . (9.42)

Vds €
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For e = d;l/ % this becomes 36d§1/ % which becomes arbitrarily small for large enough
ds. Hence for large enough dg it is possible that all but exponentially few pure initial
states of S evolve to the same state in time 7 = 7 - dil—;l -T.

Theorem guarantees that we are not yet independent of the initial state up
to times of order 2 - 1072 - T for large enough dg. We conclude that up to a factor
of at most 102 our lower bound on the time which is necessary for initial state
independence is also achievable.

The gap which is expressed by the factor 10? is not only due to the estimates we
applied but fundamentally due to the differences between min- and max entropies
and thus due to the basic techniques on which our attempt is based. This is illus-
trated in the limit of a vanishing smoothing parameter ¢ in Figures and 0.4 A
non-zero smoothing parameter allows to reduce the gap between the two entropy
measures by decreasing untypically large eigenvalues (in the case of H,) or by
ignoring untypically small eigenvalues (in the case of Hy.y). Because we were re-
stricted to smoothing parameters which render the entropic quantities analytically
evaluable, we were in general not able to chose the optimal smoothing parameters.
Consequently, our best attempt above still led to results with a gap of two orders of
magnitude between times for which we can guarantee that the system still “remem-
bers” its initial state and times for which we can show that it has “forgotten” about
it.

So far in this section we have been interested in finding times for which we can
guarantee that HS, (5), & HS . (E),. We know that the system has not yet become
independent of its initial state (or, more generally, not yet thermalized) as long
as this is fulfilled. In Chapter [6] we saw that sufficient entanglement of the relevant
energy eigenstates will eventually lead the system to independence of its initial state,
but did not make any predictions about which times are sufficient for this. As we
saw in this section, the condition HE, (S), 5 Hi(E), provides in principle times
which are sufficient. It seems outside the scope of our techniques to obtain a general
formula for times which are sufficient to reach this condition which only depends on

the initial state and the Hamiltonian.

9.1.4 The erasure time of a quantum memory

In an i.i.d. scenario the gap between smooth min- and max-entropies can be closed
according to Theorem which allows to replace the smooth entropies by the von
Neumann entropy. A little more work is required to rigorously prove the following
theorem. It states that if we apply an i.i.d. channel T;”; to a pure state of a tensor
product space H%", then for large enough n the sign of H(A|B), provides a tight
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Figure 9.3: HE, (S)r1) and HE,,. (S)-( in the limit € — 0 for dg = 10*. The maximal

min max

difference between Hyin(S) and Hyax(S) grows like log dg — 1 and can thus become
arbitrarily large. The dashed line shows the von Neumann entropy Hq(S),q).

criterion for whether different input states yield the same output. For large enough
n, if H(A|B), > 0 almost all states |¢)an € H3" yield the same output. This is not
the case if H(A|B), < 0.

Theorem 9.3. Let T4, g be a CPTPM with Choi-Jamiotkowski representation Ty g =
J(T). Then

In2 1 .
{1757 @) = 77, > exp (= 552 (HAIB), =) 4 1+

< 2exp (—djg/?’ /16) (9.43)

where the probability is computed over the choice of ¢ an from the Haar measure on

HE". The constant c is
1
ceO <\/ Oin -logdA> . (9.44)
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Figure 9.4: The functions H:; (S)r1) — Hiax (E) 7@y and He i (S) ) — Hiox (B) 7@y in
the limit e — 0. For dg = 10' (upper figure) one of the two functions is positive for
approximately half of all times. For dg = 10'° (lower figure) the fraction of times for

which one of the two functions is positive is vanishing.
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Conversely, Ve, > 0 3N such that ¥Yn € N, n > N if H(A'|B), < —¢ then
Bwpn € S_(HE™) such that

]' /
AT (ban) —wpell,),,, <5 ¢ (9.45)
and in particular
([T (Pan) = 75" 1),,. > 1 — 2 (9.46)

where the average is computed over the Haar measure on HE".
Proof. Theorem gives for the channel 74", 5. that
Pr {HTnHBn ¢A") - TBnHl > 2= 2 H i (A™ )¢An %H;m(Aln'Bn)‘ran -+ 12€+ 5}

< 2¢TA0/16 (9.47)

For the exponent we find with Lemma [A.11|and (3.12)

1 1

- §Hramn(An)¢A" - 2H§’un(Am’Bn)T®"
1
< g {__Hrinn(A/n‘Bn)T(@"}
<) _HAIB), + — -4y log [ 2) - 1og (2—%Hmm<“‘3>f + 93 Hmax(AIB)- 1)
— 2 Ton g2
n 1 2
< B H(A|B), + log = -log 2\/d,4+1> . (9.48)

e

Defining ¢ = -3~ and 0 = d;"/ % vields the first assertion.
The condition of the converse, Theorem [4.4] requires for pure input states ¢n

mr

"oy 2 n
HE: '42e 4¢ —hf(An) ban +10g_ + H;aX(A/ Bn)7®n He" (BW)T®n <0. (949)

min min
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The Lh.s. of this condition is by use of Lemma[A.10] Lemma Lemma and
B.12)

"

17 " 2 n
Hs "2 +¢ +\f<An) ban +10g_ +Hr€nax(A/ Bn)7®n HE. (Bn)7_®n

1 1 20 . 1w
<n< —log log— + = Hr‘ilax(/l’ B™) a0 — H;IH(B")T@%
n 1— (8 el e \/‘)
1 1 1 2
<n< —log l 0g — p
n 1— (5 el e \/‘)

YH(A'B), + \F log log <\/dAdB + 2) n;;;l(B")T@n}

1 1 1 2
<n< —log 5 + —log —
noo1— (5'+25”+5”’+ Ve noo e

+H(A'B), + \/_ log — //2 -log (\/m—l- 2)

1 2
—H(B): + T -4y [log < ///2> log <27%Hmin(B)T 23 Hmax(B)r 1) }
n

1 1 1 2
<n< —log 5 + —log —
noo1-— (5'+25"+5’”+ ve)yh o no e

+H(A'B), + \/_ log -log <\/m + 2)
—H(B), + % 4 [log ( m2> 10g (Vs + 1)}

= n{H(A'|B),+d(n)} . (9.50)

Hence if H(A'|B), < d(n) condition (9.49) is fulﬁlled Let & =" =¢” = L. ¢ may
take any value for which the term log 5 is still well-defined. So for

(5 +2€“+€’”+\f)
large enough n, ¢ may take any value of the form 1 — 20" with ¢’ > 0. The quantity
d(n) becomes arbitrarily small for large enough n. So after relabling §(n) — ¢ and
8"+ ¢’ the assertion follows from Theorem [4.4l O

This has a direct physical interpretation. For instance consider the input space
HE" to be a data storage and consider n to be large enough that we are allowed to
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chose small parameters ¢,¢’. Every factor is then subject to the same interaction
with the same environment, i.e. the channel is

7Tg_>5(03) = TI"E [e_ﬂHSEt (O'S X pE) €+ﬁHSEt} (951)

By the n-fold tensor product 7§"¢ we model the i.i.d. characteristics of noise. At ¢ =

0 we have H(S'|S), = —logds. According to Theorem 9.3| as long as H(S5'|S), < 0
different initial states of the storage H5" have not yet evolved to the inside of a ball
with radius % in trace distance. The storage still “remembers” its initial state. The
storage has been erased by the noise if at some time H(S’|S), > 0. Almost all (pure)
initial states of the product space HE" will then have evolved to the same state 75"
The channel and thus also 7¢ are in general time-dependent.

If logdgs > 4logdg (e.g. the noise consists of only a few photons) the noise can
never fully erase the storage. To see this, let ¢gp be a purification of pg, so

TS'SEP — B_ﬂHSEt (WS/S & QbEP) €+ﬂHSEt (952)

is a purification of 7¢/g. For all times ¢ we have H(SEP), = logdg. Then,
H(S'|S), = H(EP), — H(S),

< H(EP), — H(S|EP),

— 2H(EP), — H(SEP),

<4logdg — logds

<0. (9.53)

In order to calculate the minimal erasure time we want to know the time at which
we have H(S'|S), = 0 < H(S), = H(S'S), for the first time. For this we need to
upper-bound the rate with which H(S’S), can increase starting from 0 as well as
the rate with which H(S), can decrease starting from logdg. Theorem tells us
that the sum of the two rates is upper-bounded by 6logds - A(H;y), so that the
time needed to reach H(S'|S), = 0 is for any S at least # - m Slightly better
results can be obtained from for concrete dg. The erasure time is for dg = 2

at least 0.414 - m and for large dg at least % . m Following the discussion
in Section we may improve the above bounds if we replace A(H;,;) by A (Hmt)

as a measure of the interaction strength.
We consider an example to discuss the achievability of these bounds. Recall

the Hamiltonian with interaction strength A (lf]mt> = 1 discussed in combination
with the initial state |1)(1|g of the environment in Section Since the state
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Tysp = e THsEL (Ug o @ |1)(1]g) e 5B is then pure, we have H(S'S), = H(E)..
The time which is necessary to reach H(S’|S), = 0 is therefore equal to the time
which is necessary to reach H(S), = H(E),. This time is independently of dg given

by § =75 m, as can be seen from (9.28)), (9.29)) and (9.38]). Our lower bound

on the erasure time is therefore for large dg tight up to a factor of % -5 & 2.356. The
corresponding values for other local dimensions can be found in Table [9.1]

dS:2 dS:3 d5:22 615'225 ds—)OO

Minimal erasure time | 0.414 0.486 0.521 0.574 %

Table 9.1: Lower bounds on the times which are necessary to erase a storage S™ for

large n through i.i.d. interaction with an environment in terms of the local dimension

dg. The times are measured in units of ﬁ, the inverse of the interaction strength.
int

Erasure is achievable for any local dimension dg > 2 in time g X ( hlr ) ~ 1.571 -

A(Hint)'

This bounds hold for any state E may initially be in and for any interaction
between S and E. The only assumption we made is that the interaction between S
and F may be described as i.i.d. on the length-scale of S. If there are still correlations
in the system’s interaction with the environment on the length-scale of one copy of
S we may group a number of factors S together which is large enough such that
the correlations in the interaction decay over the new enhanced length-scale. This
obviously reduces n, the number of factors, correspondingly.

9.1.5 Local interactions

So far in this thesis we have dealt with the most general system and interaction
compatible with the laws of quantum mechanics. In particular we allowed for cases
in which “all of” the environment is interacting with “all of” the system. A more
sensible model of the interaction would include a notion of locality and only allow for
local interactions. In such a model we hope to find a better bound on the rate with
which H(E), can increase and H(S), decrease than the one in Theorem [7.3] This
bound includes the dimension of the whole system (or environment), which seems to
be pessimistic in cases where only parts of it are interacting with the environment
(or system).

Consider that the joint system is a set of sites each of which has a space C?
attached to it. The joint Hilbert space is then the tensor product of all those spaces.
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Assume that the strength of the terms in the Hamiltonian which act on multiple
sites decreases exponentially with the distance between those sites measured in a
suitable distance measure. In such a system, the Lieb-Robinson velocity defines an
effective light cone for causal interactions (c.f. [Hasl0] for a concise introduction).
The influence of sites which are outside of the past light cone of a certain region
defined by the Lieb-Robinson velocity is exponentially suppressed.

This supports the intuition that information can effectively propagate only with
a certain maximal velocity if only short-range interactions are allowed. Still, it
does not quite solve our problem which is how fast entropies in a certain region
can be changed if we only allow for local interactions. Let the system be of the
form Hg = ((Cd) #"s and the environment Hp = ((Cd)®nE. Let the Hamiltonian be
Hsp = Hs®1p+1s® Hg + Z§=1 K. Geometrically, we expect the number of
interaction terms r to scale with the surface of the ng sites in S. In spatial dimension
D this would imply a relation

r o ngD_l)/D . (9.54)

From eqn. (|7.28]) we know that only the interactive part of the Hamiltonian is
relevant for changes of the local entropy. We have

%H(S)pm = —1Trsp { Hin [log(ps(t)) ® 1g, pse(t)]}
=2~ iTesp {K© log(ps(t) @ Um, psp (]} - (955)

The absolute value of each summand could now be upper-bounded using Theorem
, that is by 2A (K (j)) logds. We would actually expect to find a better bound
due to the assumed locality of the interaction. Let KU) act non-trivially only on
ws(7) tensor factors of Hg and wg(j) tensor factors of Hp. We would then expect
that there is an upper bound on the absolute value of each summand which is of the
form

|—iTrsg {K9D [log(ps(t)) ® Lg,pse(t)}]| <c-A (KY) - min {ws(5), wp(j)} - logd
(9.56)

with a constant ¢ € O(1) which does not depend on ng. This bound is symmetric in
S and E and would thus also apply to entropy changes in . Whether such an upper
bound exists is actually an open problem (c.f. [Bra07] where an equivalent problem
is discussed under different nomenclature). Numerical maximization results and the
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fact that such a bound can be derived under special assumptions on the eigenvalues
of p(t) [BraQ7] suggest that there is a general upper bound of this form. Assuming
that there is such a bound we would have

d a Ay . .
7 H )| = Clogdjzlﬁ (KY) min {ws(5), we(j)}
< cKr log d (9.57)

with K = max; (A (KY) min {wg(j), wg(j)}). This bound scales with r which we
expect to scale with the surface of the system. Formally we expect to hold.
The maximal entropy in S scales with ng. Together, this would imply that the
minimal time which is needed to reach a high-entropy state on S starting from a
pure state scales with nls/ D, i.e. with the diameter of the system. A time of the same
order would be needed to reach H(S) = H(FE) starting from H(S) = logds and
H(F) =0 and thus to reach initial state independence in the i.i.d. scenario.

Every bipartite Hermitian operator like H;,; may be decomposed into a sum of
products of Hermitian operators. From we know that for product Hamiltonians
the maximal achievable rate of change of the entropy in .S does not depend on log dg.
From ((9.55)) we know that local changes of the von Neumann entropy are additive.
The maximal rate with which the entropy in S can change therefore scales with the
number of product terms in the decomposition of H;,;. The maximal number of
product terms in the decomposition scales polynomially with the local dimension dg
[BHLSO03].

A bound on the rate of change of the logarithmic quantity H(S) which grows
polynomially in dg may in general not be of much use for our purposes. Still, we
may derive useful bounds with this method if we bound the number of product terms
in the decomposition of H;,; by use of the assumed locality of the interaction.

If the number of product terms in the decomposition of H,,; scales with the
surface of S so does the maximal rate of change of H(S). Under this assumption,
the fact, that the minimal time to reach a high-entropic state scales with the diameter
of S, may be derived without having to rely on unproved conjectures.

Assume, for example, that the summands K ) describe interactions between two
qubits. Then there can only be a small number of product terms in the decomposition
of each KW, The number of product terms in the decomposition of H;,; = 25:1 KO
is then at most a small number times r, the number of qubits in .S which are interact-
ing with qubits in F. Every such product term leads to a maximal entropy change
which according to is independent of any local dimensions. From we
know that the entropy changes induced by different summands of the Hamiltonian
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are additive. We conclude that in this scenario the maximal rate with which the
local entropy can be changed scales with r, the number of qubits in S which are
interacting with qubits in F.

9.2 For generic initial states of the system and
generic initial states of the environment

9.2.1 Maximal entropy does not decrease

In the previous section we were dealing with a specific pure initial state of the en-
vironment. If we remind ourselves of our results about independence of the initial
state of the environment, this is not really necessary if we are ready to neglect an
exponentially small fraction of initial states of the environment. Applying our results
about independence of the initial state of the environment will allow us to progress
further on the issue of independence of the initial state of the system.

We are still interested in how long we can guarantee that different initial states
of S have not yet evolved to the same state. In Section [9.1] we saw that in order to
answer this question it is relevant to know how fast the entropy in S can decrease if
it is initially maximal. The bounds we applied hold for any initial state of E. Yet,
for generic initial states of £ they are rather pessimistic. In fact, almost all initial
states of E do not lead to a significant decrease of the entropy in S, if S is initially
fully mixed and F is sufficiently larger than S. This allows to improve the bounds
from Theorem [9.2] for almost all initial states of E.

Lemma 9.4. Consider an initial product state ms @ pp(0). Let ps(t) denote the state
of S at time t. Then for all times t

dg —-1/3 _qi/3
P 1) — > 1 < e %e/16 9.58
Pr lps(t) — sl \/@+ P e (9.58)

where the proability is computed over the choice of pp(0) from any unitarily invariant
measure on S—(Hg).

Proof. This follows directly from Corollary [8.2| where according to (8.7)
75 = Trpp [e 58 (1g @ Upp) et P!
=Trp [e 57! (mg @ mp) et 157!

=TS . (959)
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According to Lemma [9.4], an initial product state which is fully mixed on S will
with high probability be close to fully mixed at any time if log dr £ max {2logdg, 12}.
It then follows from Fannes’ inequality, Theorem [3.1] that the von Neumann entropy
of such a state will be close to maximal. Similarly, the smooth mm—entropy Wlll at a /y
time be large with high probability. We have for all times ||pg(t) — 7gl|; <

except with a probability of less then e~ /16 Tf this is the case, we find With Lemma
and the definition of the smooth min-entropy (3.40) that H3; (S),u) > logdy if

1/3
52\/2(F+d )

9.2.2 (Quantitative version

In Section [9.1.2] we saw that the question whether the system is already independent
of its initial state is equivalent to the question whether the entropy in F of the state
Tsp(t) is already larger than the entropy in S. In Section we investigated how
long we can guarantee that this is not the case and thus considered the maximal rate
with which the entropy in S can decrease. The result in the previous section shows
that this is not necessary for most initial states of the environment because S stays
close to fully mixed.

The times for which we can guarantee that different initial states of S have on
average not yet evolved to the inside of a ball with radius § depend on dg and €. For
simplicity, we discuss the two limits of large dg and small ¢

Corollary 9.5. Consider a system S which at t = 0 is put in contact with an
environment which is in a pure state ¢r. Let the joint evolution be governed by a

Hamiltonian Hgg with interaction strength A <P~Imt> as defined in (2.37). Let pﬁ(t)

denote the state of the system at time t given that its state at t = 0 was ¢g. Let
log dg be sufficiently larger than 2logds. Then the following two statements hold for

all initial states of the environment ¢ except a fraction of less than =i’ /16 from
the Haar measure.
1. Forlogds Z 25 as long as
(0.058 - 2
0.101 - —=
t < A(fuwr) (9.60)
0.117 * A(Hint)
0.125 - —-2L
\ A(Hint)
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Figure 9.5: The times for which we can guarantee that different pure initial states
of S have not yet evolved to the same state as a function of logds. The times are
measured in units of ﬁ. We assumed that E is larger than two copies of S.

int
The statement then holds for all initial states of E from the Haar measure except a
fraction which is exponentially small in d}3/3.

there is no state wg € S—(Hg) such that

é )
£) — > << 9.61
<H'OS() ws 1/ ¢ 2 ( )
where
e=10""1
=102
9.62
e=10"3 ( )
e—0

2. In the limit of € = 0 the times for which we can guarantee that there is no

state wg € S—(Hg) which fulfills are given in Figure [9.5

We recall that we showed in Section that initial state independence in the
sense of (9.61) can be achieved (for any ¢ and large enough dg) in time —=Z

A(ﬁint) '
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Comparing the above results with the ones obtained in Theorem [9.2] we see that
neglecting an exponentially small fraction of initial states of F allowed us to improve
the lower bounds on the times which are necessary for initial state independence
by a factor of around 5. Since we are now dealing with generic initial states of the
environment, we have lost the dependence on the relation between the initial state
of the environment and the Hamiltonian which is expressed in Theorem 9.2 with the
term [|[Hsp, ms ® @],

Proof. We are interested in the channel
b5 —p5(t) = Tsos (6s) = Trg [e7 55! (g5 @ gp) et 2! (9.63)
We introduce the state
Tosp =€ 9 (Ugg @ ¢p) e st (9.64)

which purifies the Choi-Jamiolkowski representation of 7s_,5. From Theorem we
know that if

E/ El/ E/// e 5// 5/// 2
Hi YA (8)g + Hi(5'5), = HE(9)- +log 25 <0 (9.65)
there is no state wg € S_(Hg) such that
& £
Do) <% |
e =es],),, <3 (60

The first summand can be bounded by use of Lemma [A.10] Using that 7s/5 is pure
we have by Lemma |3.4]

Hrii;‘x(S/S)T = HI\?I:;X(E)T (967)
which can then be bounded by use of Corollary and the fact that 7' > m.

As for the third summand, 7g is at t = 0 fully mixed which allows to apply Lemma
0.4 We conclude that except for a fraction of states ¢ from the Haar measure

which is smaller than e=9% /16 we have
H5i(S): > logds (9.68)

Here, according to Lemma and by use of Lemma [3.3} it is sufficient to choose

d .
" = \/2 (\/T?_E + dE1/3) . (9.69)

Since we assumed that log dg is sufficiently larger than 2log dg, we view £ as negli-
gible. Finally, the parameter ¢’ can be chosen so as to minimize the L.h.s. of .
Inserting the relevant values of ¢ and dg and solving for the time for which
equality is obtained for the first time yields the assertions. ]
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9.2.3 In the i.i.d. scenario

In Corollary we made use of the insight that if the initial state of .S is fully mixed
the system will at all later times be so for almost all initial states of the environment.
This can also be applied in the i.i.d. scenario. In Section[9.1.4]we had to upper-bound
the rates with which H(S), can decrease from log dg and H(S’S), can increase from
0 (with 7 as defined in (9.52))). From Lemma and Fannes’ inequality, Theorem
3.1} we know that in fact H(S), will stay close to log dg for all times and for all initial

states of F except a fraction e~ /16 from the Haar measure if log dg is sufficiently
larger than 2logdg. If we are willing to neglect this exponentially small fraction of
environment states, we only have to bound the rate with which H(S’S), can increase.
This allows to improve the bounds from Table by a factor of approximately % to
the ones given in Table [0.2]

dSZQ dS:3 dsZQQ dS:23 ds—)OO
Minimal erasure time 0.414 | 0.486 0.521 0.574
Minimal typical erasure time | 0.685 | 0.792 0.841 0.909

Ll LS

Table 9.2: The first line gives lower bounds on the times which are necessary to erase
a storage S™ for large n through interaction with any i.i.d. environment in terms of
the local dimension dg. The second line gives lower bounds if we are willing to neglect

a Haar measure fraction of less than exp <—d115/3 / 16) of the states the environment
might initially be in. The times are measured in units of ﬁ, the inverse of the
int

interaction strength. Erasure is achievable for any local dimension dg > 2 in time

T 1 ~ . 1
3 Ay S LT s

9.3 For specific initial states of the system and
generic initial states of the environment

In this section, we discuss sufficient conditions under which a system does for most
initial states of the environment not become independent of a particular initial state.
We have already seen in Theorem that the time-averaged state of the system is
independent of its initial state if the energy eigenstates are sufficiently entangled. In
[GME1L1] a converse statement is proven. Assume that there is a basis {|i)s}, of Hg
which is such that for all energy eigenstates the partial trace Trg |Ey)(FEy| is close
to one of the basis states |i)(i|s. This implies that all energy eigenstates are close
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to product and thus are poorly entangled. Consider two pure initial product states
whose S-part is one of the basis elements. Then the distance of their time-averages on
S is unlikely to be much smaller than the initial distance of their S-parts. Formally,
we have the following theorem.

Theorem 9.6 (|[GMELIl Theorems 1 and 2]). Consider two pure initial product
states ¢g}5(0) = g)(O) ® ¢%)(0), i € {1,2} evolving under a non-degenerate Hamil-
tonian Hgsg, yielding temporal averages ng)a We define the quantity

R(6D(0) = >~ [(Exlo®) |

T BB -6 O, (070)

which 1s small if all energy eigenstates either are close to orthogonal to qb(SQE(O) or
locally resemble gb(;)(()). Then,

[ =] = [0 - 6@ - RED©) - RGP @) . (9.7)
The quantity R(¢™(0)) is small for almost all gb%)(O) if ¢§§>(0) is an element of a

basis {|l)5}7jl of Hs which is such that the partial trace of each energy eigenstate is
close to one of the basis elements. Formally,

(4) () <
<R ( s (0)® ¢ (0)) >¢§;>(0) < dds (9.72)
where
§:= mgxmlin | Trg | Ex) (Ex| — 1) Us]l, - (9.73)

This disproves the long-held conjecture that all non-integrable systems thermal-
ize (since they do not necessarily become independent of their initial state). We
refer to [GMEL1] for different definitions of integrability. A possible definition is to
require the existence of dg mutually commuting and linearly independent conserved
operators on S. Developing the result of the decoupling theorem in the form of The-
orems [8.1] and a little further, we are able to strengthen this result. Instead of
making a statement about the temporal average of S we make a statement about
the time-evolved state itself. We do not only prove that the distance between pure
initial states which locally resemble an energy eigenstate does not decrease but that
such states actually stay close to their initial states for all times. In contrast to
statement which is a statement about an averaged distance, we obtain an ex-
ponentially strong statement. We do not require that all energy eigenstates be close
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to product but only the ones which are most relevant for the particular initial state
of the system. Furthermore, we allow for mixed initial states of the environment.
The most important improvement, however, is the following: Inequality gives
only a non-trivial statement if § < %. This upper bound decreases exponentially
with the number of constituent particles of the system. For a large system S we
therefore basically need no interaction at all. On the other hand, the bound we
obtain is non-trivial independently of the size of S.

Theorems and [8.3|do not only tell us that the time-evolved state of the system
ps(t) will very likely be close to a state 75(t) which is independent of the initial state
of the environment, but also what this state looks like. If ps(0) = ¢5 and the initial
state of the environment is drawn from all of Hpg it is given by

T5(t) = Trp [e 155 (¢ @ mg) et HHsPf] (9.74)

Saying that the time-evolved state becomes independent of the initial state of S is
equivalent with saying that 7¢(¢) is independent of ¢s. We will show that this does
not happen, but that in fact 74(t) ~ ¢g for all times, if the energy eigenstates which,
in a certain sense, locally are “most similar” to ¢g, are close to product states.

In order to make this precise, consider a basis {|i)s},_; .. of Hs and a basis
{17)E}i=1. 4, of Hi. To each energy eigenstate | Ej) we assign the pair (i, j) of basis
states which is closest to |Ey). More precisely, we assign to each |Ej) the pair (i, j)
which maximizes the expression F'(|Ek), |i)s|j)r). We denote the pair (i,;j) which

achieves this maximum by (5 (k), ¢ (k)) and define

fi = F (1B, ) sI€R)) £ ) (9.75)
This gives a mapping
(1,... dsdg} — {1,...,ds} x {1,....dg}
k — (k). €8)) (9.76)

We will assume that this mapping is injective, that is, every energy eigenstate
is best approximated by a different element of the product basis. Since the sets
{1,...,dsdg} and {1,...,ds} x {1,...,dg} have the same cardinality, this also im-
plies that the mapping is bijective.

The relevant measure of entanglement is then for ¢ € {1,... ds}

0(¢) := min{fy : £(k) = o} . (9.77)
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Lemma 9.7. With the notation introduced above, assume that the mapping k
(f(k:),f(k)) is injective and consider an initial state |¢p)s with ¢ € {1,...,ds}.

Assume that §(¢p) > % Then with T5(t) as defined in (9.74) we have

I7s(t) — @sll; < 46(d)v/1 —6(¢)? (9.78)
for all times t.

We can always obtain an upper bound on ||75(¢) — ¢gl|;, which is close to 0 if 6(¢)
is close to 1. By definition ((9.77)) the requirement §(¢) > \/Li requires that fj > \/Li if
£(k) = ¢. If this condition 1s fulfilled, the r.h.s. of is smaller than 2 and thus
non-trivial. We can make sure that the mapping is injective as assumed by requiring
that fp > \/Li for all k.

Combining Lemma with Corollary directly yields the statement that for
all times there is an exponentially small probability that the initial state of the
environment was such that the system is further away from its initial state than a
certain distance.

Theorem 9.8. With the notation introduced above, assume that the mapping k —
(f(l{:),é(k)) is injective and consider an initial state |¢)s with ¢ € {1,...,ds}.

Assume that 6(¢) > \/LE Let ps(t) denote the evolved state of the system. Then for
all times t

ds -1/3 _qLB
Pr t) — > 46 1—0(¢)2+ —=+d <e /10 9.79
P los(t) = sl > 43060/ T= 3007 + =+ a; (9:9)
where the probability is computed over the choice of the initial state of the environ-
ment pg(0) from any unitarily invariant measure on S—(Hpg).

Consider the case where {|i)s};_; . is the eigenbasis of Hg and {|j)r},_; 4.
is the eigenbasis of Hg. We view H;,, as a small perturbation of the unperturbed
Hamiltonian Hg ® 1g + 1g ® Hg. Then, the unperturbed value of f; is 1 and the
first order correction is 0.

A weakness of both Theorem and Theorem is that an average or a prob-
ability is computed over the choice of an initial state of the environment from the
Haar measure on all of Hg. This allows for the possibility that there is a reasonably
large subspace Hq, € Hg which is such that initial states taken from it do not lead
to memory effects in system. One might imagine, for example, that all initial states
of F with a sufficiently large temperature do not lead to such memory effects, but
that still most states from the Haar measure on all of Hg do.
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ps(t)

Figure 9.6: Different initial states (bold lines) approach a common evolving state
(dashed line) which does not equilibrate towards its time-average (dashed-dotted
line).

In Chapter [6] we mentioned initial state independence and equilibration as neces-
sary conditions for thermalization. Here we showed that even when evolving under a
non-integrable Hamiltonian it is possible that a state of the system does not become
independent of its initial state for most environment states. From Chapter [6] we
know, however, that it will equilibrate for most environment states if the environ-
ment is large enough. Hence the two conditions are independent of each other. An
interesting and to the knowledge of the author open problem is, whether the inde-
pendence also holds in the other direction. That is, is it possible that most initial
states of the system become independent of their initial state (or at least that their
time-average is independent) but that they do not equilibrate? The idea is drafted
in Figure 9.6

We will now proof Lemma The above theorem then follows straighforwardly
from Corollary and a single application of the triangle inequality.

Proof. In order to shorten our notation we introduce the shorthands ¢ (k)s = |£(k))(£(k)]s
and £(k)gp = |€(k))(€(k)|g. Sums with summation index k or [ go from 1 to dgdg
and sums with summation index r go from 1 to dg. By use of the assumed injectivity
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(and hence also bijectivity) of the mapping, we have
k)60 (k) £y = Okl - (9.80)

This implies that , e~ "Fri¢ ( (k £ is a unitary, since

(e mctnse )(zs <>)T
- (Sememse s )(z #8050 €00

= Ze*“Ek POy 000 € ED) s © ERNED)
= Ze‘“Ek B () E (k)]s @ E0R)) (E(R) |
= Lse - (9.81)

We first show that 7¢(¢) has high fidelity with the state

(Ze‘ﬁEktf(/f)s®g(k)E> s @ TE) (Z et (1) () >]

k

TI‘E

and then show that this state is identical with ¢g. According to (| - ) the fidelity
can only increase under partial traces, that is, it can only decrease if we calculate it
for purifications of the actual states, so

F? {Tg(t),TrE (Ze_ﬁEktf(k)s®g(k)E> (bs ® TE) (Z M (1) @ E(1)i >]}

k

=F? {TTE <Z€ﬁEkt‘Ek><Ek’> (¢ps ®7p) (Z€+nElt|El El)
(Ze‘”’“%(%@é(km) (65 ® 7E) (Z e Pl (1)s @ E()p )”

> F? { (Z €ﬂEkt|Ek><Ek‘> (¢ps ® Vp) <Z eJﬂ.lElt|El><El|> ;
© l
(Ze_ﬁEktf(k)S@?é(k)E) ¢S®\I]EE’ <Ze+nEltf ( ) )} .

TIE

k
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Both these states are pure, so using eqn. (3.28) and that |V)gp = ﬁ Yo el e

we find
F2{ 5(t), Trg
> <¢Is(‘1’|EE/<

By definition

9.77)

l k

— é Z(¢|S<T|E (Z 6+ﬁElt’Ez><Ez|SE> (Z e Pe(k)s ®é(k5)E> 0)s|r) e

l k

W(Ex—Ep)t 2 {|E1>SE> (K )>S|é(k)>E}

TR (E(R) 5 EN(Eilsplé (k) s|é () s

(Ze_nE’“tf k)s ® (k) g ) (¢s @ 7E) (Zeﬂ&tﬁ @€ >]}
Ze+ﬁElt|El><Ez|SE) (Z G_ﬁEktf(k)s®é(k)E> 19)s|¥) eEr

2

2

1 7]1
=z > (8lsirle (ZeﬂElt!El El\SE) (Ze B¢ (k))slE(R)) g >5¢7§(k)5r,é(k)
1 _
= @Z%&(k)e
kl
= Z5¢é

2

2

(9.83)

the requirement 0(¢) > \/Li requires that

P2 {|B) s [€0)sIEk)e } >

1
2

(9.84)

if 0ye() = 1. Since 37, F? {\EZ>SE, \5(k)>gyé(k)>E} — 1, this also implies tha

> 1 {|B)se, [€0slé(b)e | <

L2k

1
5 (9.85)

2 With 7, 41 we denote a sum over all values of I which are not equal to k. With >-, ,;, we
denote a sum over all pairs of possible values of k and [ which are not equal.
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if 0 eky = 1. We conclude that

> Gocae B { | Bsp, € (k) sl€(k)) 5 |

k£l

<> Socm P2 {IEsm, 1) sl (k) }

k£l

<> Gsew P {IB)sr, [E0)sIER) ) - (9.86)

k=l

We split up the sum ) ,, = >, _,+ >, and use that for a,b € C with |a| > [b] we
have |a + b| > |a| — |b] to obtain from (9.83)

(Ze B (k)s @ E(k)p >(¢S®WE) <26+ﬂEltf(l)S®é(Z)E>]}

i(Ep—E)t 2 {|EI>SE7 €(F))s ‘é(k»E}

FQ{ 5(1), Trg

(5%

> <é Z O ey F” {'EI>SE7 ff(k)>5|é(k)>E}

|3 docye B EE (| B () s

k£l

__Z(SM {|El se: [§(K))s ’g(k»E}) : (9.87)
Bt
Using that
Z F? {|EZ>SEa |§(k)>5|£(k)>E} =1-F? {|Ek>SE, |§(k)>5|é(k)>E} =1 f7
l:l#k
' (9.88)
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this simplifies to

F? {Tg(t), Try

(Ze_ﬁEktﬁ(k?)s®g(k?)E> (¢s @ Tp) (Z et Pl (1)s @ E(D)p >]}

k

2
1
> (@Z%g(mﬂ? Z%a (1-12 )
k
2
1
= <@;5¢,§(,€) (22 - 1)) (9.89)

Applying the definition of §(¢) and the bijectivity of the mapping we finally obtain

(Ze_ﬁEktf(k)SQ@g(k‘)E) (s ®TE) (Z e (s @ €1 )]}

k

2
1
( an -1) Z O,¢ (k) >
2
= (26(¢)> = 1)" . (9.90)
As for the second part of the proof,

(Z e P (k)s @ g(k)E> (ps @ 7g) (Z etiPie(l)s @ gu)E)]

—ZdE (B0, )00 20 [ R E WD

F? {Tg(t), Trg

v

=> @67H(E’“*El)t%,s(k)&(k),s(z)5g(k),g(z)¢s (9.91)

Applying (9.80) for the first equality and the bijectivity for the second this simplifies
to

(Z e e (k)s @ é(k)E> (¢s ® TE) (Z et (D) s @ (g )]
=> é%g(mﬁs

= ¢ . (9.92)
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We find

F{rs(t), ps} > 20(¢)* — 1 (9.93)
and by use of
I7s(t) = ¢sll, < 2¢/1 = F(75(t), ¢5)?
< 2\/1 — (26(¢)% — 1)
=40(¢)v1—0(9)? (9.94)
which is lower than 2 if §(¢) is larger than . O
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Appendix A

Various technical lemmas

Lemma A.1. Let py € S<(Ha) and 0 <114 < 14. Then,

Hmin<A)HApAHA Z Hmin(A)PA . (Al)

Proof. This follows directly from [BCR09, Lemma B.24.]. We make the identification
Hp = spang {|0) g} and realize that in this case

pag = pa @ [0)(0]z (A.2)

for every pap € S<(Hap) and that
op,wp =10)(0|5 (A.3)
for all op,wp € S_(Hp). It follows that with the identifications made the condition
la®@wp —ap(la®@op)llag >0 (A.4)

is automatically fulfilled. The assertion then follows by direct application of the
lemma cited. [

Lemma A.2. [BCR09, Lemma B.25.] Let ¢ > 0 and ps € S<(Ha). Then there
exists 0 < Tly < 14 such that py € B (LTapalls) and
&2 g2
Hrr?ax(A)p Z HR(A)HpH —+ 2- IOg g .
Lemma A.3. [AGZ0Y, Corollary 4.4.28] For a function f : A — B from a set A to
a set B endowed with distance measures dy and dg the Lipschitz constant is defined
as

(A.5)

s (f(@). f(a2)

a1,a2€A d.A (a17 QQ)

L(f) =

(A.6)
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For a function f:U(C%) — C let (f), be the Haar measure average of f. Then,

Pr{|f(U) = {f)y| = 6} < 2¢~ /40 (A7)

where the probability is computed for the choice of U from the Haar measure and
where the relevant distance measure on U(C?) is ||.. .||,

Lemma A.4. Let par € S—(Ha® Hg). Then
/ UparUtdU =714 @ pg . (A.8)
U(A)

Proof. Since we are working with finite dimensional Hilbert spaces, we have pag €
Herm(H, ®Hgr) = Herm(H ) @ Herm(Hpg). Let {rﬁf)}‘ be a basis of the real vector

space Herm(H 4) and {77{3}]. a basis of Herm(Hg). We assume that both bases are

normalized, i.e. Try TS) = Trg ng) = 1. Then p4g is uniquely decomposable in the

form

par =Y ciTy @15 (A.9)

ij

with Zij c;;j = 1. Every term of the form fU(A) UTX)UTdU commutes with every

V € U(A) (by use of the invariance of the Haar measure) and hence by Schur’s
Lemma and the invariance of the trace under conjugation with a unitary

/ UrYutau = ny (A.10)
U(A)
We find

/ UparUTdU =3 ¢ / UrPutav @ i)
U(A) i U(A)

=7TaA® (Z Cijﬁg))
]

=74 ® PR (A.11)

where the last equality follows from the definition of the partial trace (2.10)). ]
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Lemma A.5. For papc € S<(Hapc) we have

Hyin(AB|C), < Hpin(A|C), + logdp . (A.12)
Proof. By definition,
Huin(AB|C), == sup  sup{A€R:2 4 ®0¢ > pac} - (A.13)
oc€S=(Hc)

Let we € S—(H¢) and p € R be arguments which achieve the supremum (such
arguments exist since we are dealing with finite dimensional Hilbert spaces), so
Hnmin(AB|C), = pand 27#1 45 ® we > papce. Since the partial trace of a positive
semi-definite operator is positive semi-definite again, we have 27#dgl s ® we > pac
and thus

Hiin(A|C), = sup  sup{A€R: 2714 @ 0c > pac}
occ€S=(Hc)
> u—logdp
= Huin(AB|C), —logdg . (A.14)

]

Lemma A.6 (Swap trick). Let Ha be isomorphic to Ha with basis vectors |i)as
which are the images of the basisvectors |i) 4 under said isomorphism. Define the
“SWAP”-operator

SA(—)A’ —Z| |A’+| A’< |A€Herm(HA®HA/> . (A15)

Then for all M, N € End H 4
TI‘(MN) ZTI"AA/ [(MA®NA/)SA<_>A/] . (Alﬁ)
Proof.

Tr(MN) = Z(z’|M\j>A<ﬂN\i>A
= Z(z‘lM\ﬁAU\N\z’m/

= TI'AA/ [(MA 0% NA’)SAHA’] . (A17)
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Lemma A.7. Let 0 : S, — End [(CY)®"] be the natural action of the symmetric
group S,, which for Il € S,, defined by

O'(H) (|61> ® e ® |€n>) = |€H*1(i)> ® C.e ® ‘enfl(n» (A18)
Let M € End [(C")®"]. Let

(M) := / UenM(UNHEmAU (A.19)
U(cd)

where AU is the Haar measure on U(C?). T is the orthogonal (with respect to the
Hilbert-Schmidt inner product (A, B) = Tr(A'B) ) projector onto spanc {o(I1) : 11 € S,,}.
Le.

T(M):= Y ano(I) (A.20)

where the an are such that (o(11), M) = (o(11),I'(M)).

Proof. This is a standard result in Schur-Weyl duality an a rewriting of e.g. [CS06,
Proposition 2.2.]. O

Lemma A.8. For p®p e S_(Ha ® He) we have

do — do —1
/ U (p @ p)(UN)*2dU = Cslzs—pcgp) “Loo + p(cg)—szd S IO (A.21)
u(©) Q — dQ Q — 0o

where the integral is with respect to the Haar measure and where S denotes the
“SWAP”-operator as introduced in Lemma[A.G,.

Proof. This integral can be solved by use of Lemma [A.7] We write
F(P ® P) = / U®2(p X p)(UT)®2dU = OtﬂQQ/ + BSQHQ/ . (A.22)
U(Q)

By use of the orthogonality of the projection (applied in the second equality below)
we find

1= (p®p, law)

= (L'(p® p), Laor)
= a (low, Lloo) + B (Saser, Log)

do do
=a ) (klkl)ao + B8 (Ik|kl)ao

kl=1 kl=1
= ad} + Bdg (A.23)
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and similarly, applying Lemma in the first equality below,

p(p) = Tr[(p ® p) Bao/]
= (p® p, Bos)
= (L(p® p), Sac)
= a(lao, Sace) + B (Saca, Saoe)

do do
=a ) (k|lk)ao + 8> _(Ik|Ik)oo

ki=1 kl=1
= adg + 5(1?2 . (A.24)

Solving the system of equations (A.23) and (A.24) for o and 8 and inserting the
obtained values into ([A.22)) yields the integral provided in the lemma. O

Lemma A.9. If

L1 < ak - f(1)° (A.25)
for an a > 0 then
1t < (FO)s + Kt)” (A.26)
fort > 0.
Proof. We introduce the auxiliary function
ht) == f(t)s — Kt (A.27)

which by use of the assumption is monotously decreasing since

dh(t) 1 1o d

——=—-f(t) -—f(t) - K<K-K. A28
2w S - K < (A28)

Since h(0) = f(0)= we conclude that h(t) < f(0)= for all ¢ > 0 which is equivalent

to the assertion. O

Lemma A.10. Let |¢)(p|la € S—(Ha) be a pure state. Then,

(A)y <log —— = = L O(eY | (A.29)

H€
1—¢2 In2

min
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Proof. For the state p|p)(¢|a € S<(Ha) with 0 < u < 1 we have P(|@)(¢|a, u|@){(d]a) =
V1 —p and Hyin(A)ug)(e) = —log p which directly yields the assertion. ]

Lemma A.11. [TCR09, Theorem 9] For pap € S—(Hap) and n € N we have for
n> %log %

1 1 2 1 1
—HZ, (A"|B™) jen > H(A|B), — T - 44 [log <_2) -log <2*§Hmin(A|B)p + 93 Hmax(AIB)p 1) .
n n €

(A.30)

Remark: The quantity Y(A|B),, appearing in the original version of [TCR09)
Theorem 9] has been replaced by use of the inequality between Definition 4 and
Lemma 8 on p. 5 of [TCR09].

Lemma A.12. For py € S_(H.) we have for n > log %

1
n

. n 1 2
Hy, (A")on < H(A), + N 4 logg -log <\/dA + 2) . (A.31)

Proof. Let ¢ap be a purification of ps. Then by use of (3.42]) and Lemma we

have
1
n

(A"[P")gen

max min

(> n 1 (>
H (A )p®n - _EH

1 2 1 1
< —H(A|P)y+ —= - 44/log ( ) -log (2’§Hmi“(A|P)¢’ + 22 Hmax(4[P)s 4 1) :
n

NG g2
(A.32)
The first summand is
—H(A|P)y = —H(AP)y + H(P)y = H(A), . (A.33)
By use of we have
Hun(AP), = —log d. (A.31)
since we can always find a purifying system P with dp = d4. Using that
(@114 ® op[d)ap < (914 @ Lp|d)ap =1 (A.35)
for every op € S_(Hp) we find from that
Hopen(A[P)y < 0 (A.36)
which yields the assertion. ]
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