QUANTUM OBLIVIOUS TRANSFER AND QUANTUM ONE-WAY FUNCTIONS

Takeshi Koshiba (Saitama Univ.)
Preliminary
Bit Commitment

In Commit Phase, Alice commits to a bit while keeping it hidden.

In Reveal Phase, Alice reveals the committed bit.

$\mathbf{b} \in \{0, 1\}$
Bit Commitment

In Commit Phase, Alice commits to a bit while keeping it hidden.

In Reveal Phase, Alice reveals the committed bit.
Security for Bit Commitment

Hiding

Bob cannot know the secret contents of the received data in Commit Phase before Reveal Phase.

Binding

Alice cannot replace the contents after Commit Phase.
Oblivious Transfer

Alice

\[b_0, b_1 \]

Bob

\[c, b_c \]

Sender’s Privacy

Bob cannot know the bit which Bob does not choose.

Receiver’s Privacy

Alice cannot know Bob’s choice.
Background and Motivation
Impagliazzo's Five Worlds (1995)

- **Algorithmica**
 P = NP or something "morally equivalent" like fast probabilistic algorithms for NP.

- **Heuristica**
 NP problems are hard in the worst case but easy on average.

- **Pessiland**
 NP problems hard on average but no one-way functions exist.

- **Minicrypt**
 One-way functions exist but we do not have public-key cryptography.

- **Cryptomania**
 Public-key cryptography is possible, i.e. two parties can exchange secret messages over open channels.
Minicrypt versus Cryptomania

- **Minicrypt**
 - One-Way Functions
 - PseudoRandom Generators [Håstad-Impagliazzo-Levin-Luby 99]
 - Statistically binding Bit Commitment [Naor 91]
 - Statistically hiding Bit Commitment [Haitner-Nguyen-Ong-Reingold-Vadhan 2009]
 - Signature Scheme [Naor-Yung 89 + Rompel 90]
 - Zero-Knowledge Proofs/Arguments [Goldreich-Micali-Wigderson 91 / Brassard-Chaum-Crépeau 88]

- **Cryptomania**
 - Public-Key Cryptosystem

- **Another World: Secretica?**
 - Oblivious Transfer
 - Secure Computation (Secure Function Evaluation)
How about Quantum World?

- Unconditional QBC \rightarrow Unconditional QOT

 [Yao 1995]

- Statistically binding QBC
 \rightarrow Statistically sender-secure QOT
 \rightarrow Statistically hiding QBC

 [Crépeau-Légaré-Salvail 2001]

- Computationally f-binding QStringC
 \rightarrow QMeasurementC
 \rightarrow Statistically receiver-secure QOT

 [Crépeau-Dumais-Mayers-Salvail 2004]

Q Secretica may be merged into Q Minicrypt?
Statistically Sender-secure (private) QOT

Naor’s construction of statistically binding BC from PRG can be adapted to the quantum case.

CLS2001

- Statistically binding QBC \Rightarrow statistically sender-secure QOT

Open ?

- Quantum version of HILL99 OWF \Rightarrow PRG
- Quantum version of OT symmetry [Wolf, Wullscheleger 2006]

Statistically Receiver-secure (private) QOT

CDMS2004: f-binding QStringC \Rightarrow QMC \Rightarrow SR-QOT

Open ?

- Construction of f-binding QStringC
Results

QOWP/QOWF-based non-interactive statistically hiding QBC → **computationally \(F \)-binding QSC**

+ **QOWP/QOWF** → **non-interactive statistically hiding QBC** [DMS 2000/KO 2009]
+ **Computationally \(F \)-binding QSC** → **Statistically Receiver-secure QOT** [CDMS 2004]

Corollary:
QOWF → **Statistically Receiver-secure QOT**

Q Secretica is merged into *Q Minicrypt* (in a sense)
QBC based on QOWP [DMS2000]

Alice

Commit Phase
① If \(b = 0 \) then use \(+ \) basis.
 If \(b = 1 \) then use \(\times \) basis.
② Randomly choose \(x \).
③ Send \(|\psi\rangle = |f(x)\rangle_b \) to Bob.

Reveal Phase
④ Send \(b, x \) to Bob.

Bob

⑤ Measure \(|\psi\rangle \) w.r.t. \(b \)-basis. Accept if the observed value is equal to \(f(x) \).
QOWP-based QBC: Properties

- Except a negligible fraction of keys (i.e., inputs x to QOWP f), the binding is guaranteed. (If the binding is violated for a non-negligible fraction of keys, f can be invertible for the inputs.

- Parallel composition is possible due to the non-interactivity.

- The parallel composition constitutes a non-interactive string commitment scheme.

- The scheme satisfies the f-binding property.
 Cheating Alice against NI-QBC

- In Commit Phase, Alice sends a malicious state to Bob.
- In Reveal Phase, Alice executes some local operations either O_0 or O_1.
- After O_0, the malicious state is changed into S_0
 - $b_0 = \Pr[\text{Bob accepts and obtains } 0]$
- After O_1, the malicious state is changed into S_1
 - $b_1 = \Pr[\text{Bob accepts and obtains } 1]$
- If $b_0 + b_1 > 1 + 1/poly$, cheating succeeds. (Weak Def.)
- Even honest Alice can achieve $b_0 + b_1 = 1$ by sending a superposition of 0-commitment state and 1-commitment state in Commit Phase. In Reveal Phase, she just executes the identity operator regardless of the committed bit.
For QBC
- $b_0 + b_1 < 1 + 1/poly$

For QSC of n-bit string, a naïve extension is as follows.
- $b_0 + b_1 + \cdots + b_{2^n-1} < 1 + 1/poly$
- For each i, $E[b_i] = 1/2^n (1 + 1/poly)$
- This is indistinguishable from the honest behavior if n is large.

So, consider the following
- Let $g: \{0,1\}^n \rightarrow \{0,1\}^m$, $m = O(polylog n)$
- Set $B_s = \sum_{x: g(x) = s} b_x$
- $B_0 + B_1 + \cdots + B_{2^m-1} < 1 + 1/poly$ (g-binding)
- There exists a good function (family)
Quantum Measurement Commitment

Alice

| $b_1 >_{\theta_1} b_2 >_{\theta_2} \ldots | b_n >_{\theta_n}$ |

$\hat{\theta}_1, \ldots, \hat{\theta}_n, \hat{b}_1, \ldots, \hat{b}_n$

QSC_Com($\hat{\theta}_1, \ldots, \hat{\theta}_n, \hat{b}_1, \ldots, \hat{b}_n$)

c $\in \{0, 1\}$

QSC_Open($\hat{\theta}_1, \ldots, \hat{\theta}_n, \hat{b}_1, \ldots, \hat{b}_n$) if $c = 0$

$\theta_1, \theta_2, \ldots, \theta_n$ if $c = 1$

Bob

Guess the parity

Check!
QSC for 2n-bit string $x_1x_2 \cdots x_ny_1y_2 \cdots y_n$
- 1st half is for basis selection for QMC
- 2nd half is for information to be sent

g in \mathcal{F} is one of the following forms:
- x_i
- y_i
- $x_i \oplus y_i$

For each g in \mathcal{F}, g-binding must be satisfied.

The above \mathcal{F} is enough to construct QMC, i.e., SR-QOT.
Construction of QSC

- 2n parallel executions of non-interactive QBC

- Reduction
 - Assume that QSC is violated (w.r.t. g) for a non-negligible fraction of keys
 - Random guess i
 - $\Pr[\text{the guess is correct}] = 1/n$
 - Random guess from x_i, y_i, or $x_i \oplus y_i$
 - $\Pr[\text{the guess is correct}] = 1/3$
 - The process above is same as
 - Random choice of j from $\{1, \ldots, 2n\}$
 - j^{th} execution of QBC is violated
Concluding Remarks

- QOT is constructible from QOWF
 - How about 2-party secure computation?
 - How about multi-party secure computation?

- The weak definition for QBC is useful to construct cryptographic protocols